1 to 110 MHz, Wide Temperature AEC-Q100 SOT23 Oscillator

Login

The SiT2024B is the most reliable and the highest quality AEC-Q100 compliant SOT23 oscillator for automotive and extreme temperature applications. This device delivers the perfect combination of wide frequency range (1 MHz to 110 MHz), excellent stability (±20 ppm), and extreme temperature range (-55 to 125 °C). It also features the industry's best 0.1 ppb/g vibration sensitivity, 10,000 g shock and 70 g vibration resistance.

The small SOT23-5 package offers the best board-level solder joint reliability and easy, low-cost optical-only, board-level inspection of solder joints.

Program oscillators to get instant samples, optimized performance, and fast prototyping | Learn More

View related products: 115 to 137 MHz | QFN package | Ruggedized | Automotive & High Temp lineup

Leaded SOT23 package for best board-level reliability, inspection, and manufacturability
"Specs" "Value"
Oscillator Type XO-SE
Frequency 1 to 110 MHz
Frequency Stability (ppm) ±20, ±25, ±50
Phase Jitter (rms) 1.3 ps
Output Type LVCMOS
Operating Temperature Range (°C) -40 to 85 (Gr. 3), -40 to 105 (Gr. 2), -40 to 125 (Gr. 1), -55 to 125 (Ext. Cold Gr. 1)
FlexEdgeTM Rise/Fall Time Yes
Voltage Supply (V) 1.8, 2.5 to 3.3
Package Type (mm²) SOT23 (2.9x2.8)
Features Field programmable, High temperature 125°C, AEC-Q100, SOT23-5
Availability Production

Unique combination of

  • ±20 ppm
  • -55 to 125 °C temperature range
  • SOT23-5 package:
    • Best-in-class stability over extreme temperature range ideal for automotive and high-rel applications

0.1 ppb/g low g-sensitivity

  • No performance degradation in harsh environments

70 g vibration and 10,000 g shock

  • Indestructible

Configurable rise/fall time

  • Optimize EMI to reduce interference to other subsystems

SOT23-5 package

  • Best board-level solder joint reliability
  • Easy, low-cost, optical-only, board-level inspection of solder joints

Ultra-fast lead time (4 to 6 weeks)

  • Reduce inventory overhead
  • Mitigate shortage risks
  • Engine & transmission ECUs
  • XTAL replacement
  • ADAS computer
  • Automotive cameras
  • Infotainment
  • Engine & powertrain
  • Defense & aerospace

Narrow By:

Document Name Type
5L-SOT23 Package Composition Report Composition Reports
Electronics Industry Citizen Coalition Template Other Quality Documents
Manufacturing Notes for SiTime Products Other Quality Documents
SiTime Conflict Minerals Policy Other Quality Documents
SiTime Environmental Policy Other Quality Documents
SiTime Warranty on Date Code Other Quality Documents
ISO9001:2015 Certificate of Registration Other Quality Documents
Conflict Minerals Reporting Template Other Quality Documents
5L-SOT23 Package Qualification Report - Carsem Reliability Reports
SiTime Oscillator Reliability Report (0.18 micron CMOS process products) Reliability Reports
SiT16XX, SiT89XX High Temp Product Qualification Report Reliability Reports
SOT23 Package UTAC Reliability Report Reliability Reports
TSMC Wafer SGS Report RoHS/Reach/Green Certificates
Tower Jazz Wafer SGS Report RoHS/Reach/Green Certificates
5L-SOT23 Package Homogeneous Materials and SGS Report – Carsem RoHS/Reach/Green Certificates
BOSCH Wafer SGS Report RoHS/Reach/Green Certificates
SiTime Environmental Compliance Declaration RoHS/Reach/Green Certificates
Certificate of Compliance-EU RoHS Declaration RoHS/Reach/Green Certificates
5L-SOT23 Package Homogeneous Materials and SGS Report - UTAC RoHS/Reach/Green Certificates

Evaluation Board (Contact SiTime) – SiT6907 (2928 SOT23-5)

Time Machine II Programmer – Program frequency, voltage, stability & more

Frequency Slope (dF/dT) Calculator – Calculate frequency slope over temperature

Reliability Calculator – Get FIT/MTBF data for various operating conditions

SOT 23 5-Pins 3D Step Model – Preview oscillator packages in 3D

Narrow By:

Resource Name Type
SiT2024 7.3728MHz LVCMOS Freq. Test Reports
SiT2024 8.192MHz LVCMOS Freq. Test Reports
SiT2024 8MHz LVCMOS Freq. Test Reports
SiT2024 9.8304MHz LVCMOS Freq. Test Reports
SiT2024 9.84375MHz LVCMOS Freq. Test Reports
SiT2024 11.0592MHz LVCMOS Freq. Test Reports
SiT2024 12.288MHz LVCMOS Freq. Test Reports
SiT2024 12MHz LVCMOS Freq. Test Reports
SiT2024 13.52127MHz LVCMOS Freq. Test Reports
SiT2024 13.225625MHz LVCMOS Freq. Test Reports
SiT2024 13MHz LVCMOS Freq. Test Reports
SiT2024 14.7456MHz LVCMOS Freq. Test Reports
SiT2024 14.31818MHz LVCMOS Freq. Test Reports
SiT2024 15MHz LVCMOS Freq. Test Reports
SiT2024 16.384MHz LVCMOS Freq. Test Reports
SiT2024 16MHz LVCMOS Freq. Test Reports
SiT2024 18.432MHz LVCMOS Freq. Test Reports
SiT2024 19.6608MHz LVCMOS Freq. Test Reports
SiT2024 20MHz LVCMOS Freq. Test Reports
SiT2024 22.1184MHz LVCMOS Freq. Test Reports
SiT2024 24.56MHz LVCMOS Freq. Test Reports
SiT2024 24.576MHz LVCMOS Freq. Test Reports
SiT2024 24MHz LVCMOS Freq. Test Reports
SiT2024 25MHz LVCMOS Freq. Test Reports
SiT2024 26MHz LVCMOS Freq. Test Reports
SiT2024 27MHz LVCMOS Freq. Test Reports
SiT2024 29.4912MHz LVCMOS Freq. Test Reports
SiT2024 30MHz LVCMOS Freq. Test Reports
SiT2024 32MHz LVCMOS Freq. Test Reports
SiT2024 33MHz LVCMOS Freq. Test Reports
SiT2024 36MHz LVCMOS Freq. Test Reports
SiT2024 40MHz LVCMOS Freq. Test Reports
SiT2024 48MHz LVCMOS Freq. Test Reports
SiT2024 50MHz LVCMOS Freq. Test Reports
SiT2024 54MHz LVCMOS Freq. Test Reports
SiT2024 60MHz LVCMOS Freq. Test Reports
SiT2024 62.5MHz LVCMOS Freq. Test Reports
SiT2024 65MHz LVCMOS Freq. Test Reports
SiT2024 66MHz LVCMOS Freq. Test Reports
SiT2024 72MHz LVCMOS Freq. Test Reports
SiT2024 74.25MHz LVCMOS Freq. Test Reports
SiT2024 74.176MHz LVCMOS Freq. Test Reports
SiT2024 74.175824MHz LVCMOS Freq. Test Reports
SiT2024 75MHz LVCMOS Freq. Test Reports
SiT2024 77.76MHz LVCMOS Freq. Test Reports
SiT2024 100MHz LVCMOS Freq. Test Reports
SiT2024 (LVCMOS, 1.8 V) IBIS Models
SiT2024 (LVCMOS, 2.5 V) IBIS Models
SiT2024 (LVCMOS, 2.8 V) IBIS Models
SiT2024 (LVCMOS, 3.0 V) IBIS Models
SiT2024 (LVCMOS, 3.3 V) IBIS Models
SiT2024 (LVCMOS, 2.25 to 3.63 V) IBIS Models
Silicon MEMS Reliability and Resilience Presentations
Performance Comparison: Silicon MEMS Verses Quartz Oscillators Presentations
MEMS Oscillators Enhance Clock Performance in Industrial and Hi-Reliability Applications Presentations
How to Measure Clock Jitter in Precision Timing Applications Presentations
How to Measure Phase Jitter and Phase Noise in Precision Timing Applications Presentations
How to Get Instant Oscillators with SiTime's New Field Programmer Presentations
Silicon MEMS vs Quartz Supply Chain Presentations
Increase automotive reliability and performance with ultra robust MEMS oscillators White Papers
Field Programmable Timing Solutions for Medical Applications White Papers
MEMS-Based Resonators and Oscillators are Now Replacing Quartz Presentations
Getting In Touch with MEMS: The Electromechanical Interface Presentations
SiT2024 Datasheet Datasheets
Time Machine II MEMS Oscillator Programmer Product Briefs
J-AN10002 シングルエンド発振器の推奨終端方法 Application Notes
AN10002 Termination Recommendations for Single-ended Oscillator Driving Single or Multiple Loads Application Notes
J-AN10006 発振器のPCBデザインのガイドライン Application Notes
AN10006 Best Design and Layout Practices Application Notes
J-AN10007 クロックジッタの定義と測定方法 Application Notes
SiTime発振器の信頼性計算方法 Technology Papers
AN10025 Reliability Calculations for SiTime Oscillators Application Notes
J-AN10028 プローブを使用した発振器の出力波形計測方法 Application Notes
AN10028 Probing Oscillator Output Application Notes
MEMSおよび水晶ベース発振器の電磁場感受率の比較 Technology Papers
Electromagnetic Susceptibility Comparison of MEMS and Quartz-based Oscillators Technology Papers
MEMS発振器と水晶発振器の性能比較(耐衝撃と耐振動) Technology Papers
Shock and Vibration Comparison of MEMS and Quartz-based Oscillators Technology Papers
J-AN10033 発振器の周波数測定ガイドライン Application Notes
AN10033 Frequency Measurement Guidelines for Oscillators Application Notes
シリコンMEMS発振器の耐性および信頼性 Technology Papers
Resilience and Reliability of Silicon MEMS Oscillators Technology Papers
SiTimeの MEMS First™ プロセス技術 Technology Papers
SiTime's MEMS First™ and EpiSeal™ Processes Technology Papers
The top 8 reasons to use an oscillator instead of a crystal resonator White Papers
MEMS Resonator Advantages - How MEMS Resonators Work Part 2 Presentations
How to Measure Long-term Jitter and Cycle-to-cycle Jitter in Precision Timing Applications Presentations
Silicon MEMS Oscillator Frequency Characteristics and Measurement Techniques Presentations
SC-AN10007 时钟抖动定义与测量方法 Application Notes
SC-AN10033 振荡器频率测量指南 Application Notes
Phase Noise Measurement Tutorial Videos
PCI Express Refclk Jitter Compliance using a Phase Noise Analyzer Presentations
AEC-Q100 Automotive Oscillators for ADAS, Camera Modules, and In-Vehicle Ethernet Product Briefs
Advantages of MEMS Timing - Parameters Videos
SiTime MEMS Oscillators - Revolutionizing the Timing Market Videos
SiTime's Time Machine II - Part 1: How to Install Oscillator Programming Software Videos
SiTime's Time Machine II - Part 2: How to Program Field Programmable Oscillators Videos
SOT 23 5-Pins 3D Step Models
Timing Solutions for Automotive Systems Brochures/Fliers
SiTime MEMS Timing Solutions (8.5x11) Brochures/Fliers
SiTime MEMS Timing Solutions (A4) Brochures/Fliers
SiTime MEMS Timing Solutions (A4) Chinese Brochures/Fliers
Silicon Replaces Quartz (Japanese Subtitles) Videos
Silicon Replaces Quartz (Chinese Subtitles) Videos
SiTime MEMS First 工艺 Technology Papers
SiTime MEMS First 工艺 Misc. Resources
AN10073 How to Setup a Real-time Oscilloscope to Measure Jitter Application Notes
AN10071 Computing TIE Crest Factors for Telecom Applications Application Notes
AN10070 Computing TIE Crest Factors for Non-telecom Applications Application Notes
AN10072 Determine the Dominant Source of Phase Noise, by Inspection Application Notes
AN10074 Removing Oscilloscope Noise from RMS Jitter Measurements Application Notes
頑丈なMEMS発振器で自動車の信頼性と性能を高める White Papers
gottseidank