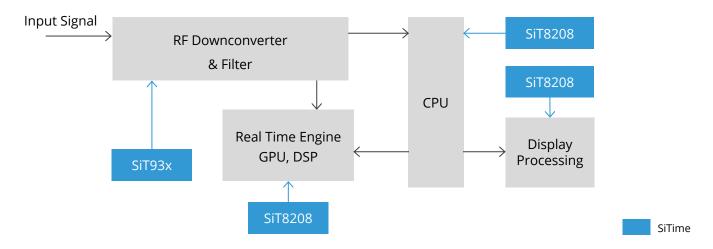
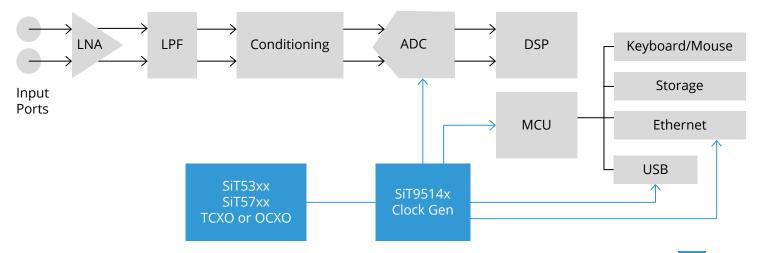


Precision Timing in Oscilloscopes & Spectrum Analyzers

Instrumentation devices, specifically oscilloscopes and spectrum analyzers, require accurate and robust reference timing. In addition, some instrumentation devices are networked and require precision timing to connect to the network and send data to and from the cloud.


The term spectrum and signal analyzers are used interchangeably but perform a critical function in analyzing frequencies to determine strength of a frequency and frequencies causing noise or interference.

Key Considerations


- Frequency stability
- Wide temp range
- EMI resilience
- Form factor for handheld and portable devices

Oscilloscopes and spectrum analyzers cater to different needs; the former to measure voltage or current and the latter to tune base stations to improve signal-to-noise ratio (SNR), or in labs to determine EMI.

Typical Vector Signal Analyzer Block Diagram

Digital Oscilloscope Block Diagram

SiTime[®]

MEMS Timing Solutions Oscilloscopes & Spectrum Analyzers

Example Use Cases

While oscilloscopes are primarily used in labs by engineers to measure voltage, spectrum and vector signal analyzers have a wide range of uses. In telecom, portable or handheld analyzers can be used by field personnel to tune base stations to improve signal-to-noise ratio (SNR), or in labs to determine EMI. Other use cases are shown in the table on the right.

Segment	Application
Medical	 Spectral Analysis to determine chemical composition
Telecom	Interference monitoring
• Defense	Anti-drone systems
Automotive	V2X calibration
Energy & Power	Interference monitoring

Networked analyzers typically do not have a display and are used for geographically distributed spectrum monitoring. Whether these are used as networked or standalone, spectrum / vector signal analyzers perform a critical function in defense for detecting RF intrusion at secure facilities, for identifying frequencies in anti-drone warfare systems and in telecom to monitor interference in licensed spectral bands.

SiTime advantages

SiTime devices offer the following advantages over quartz crystals, which are particularly important for Industrial applications:

- Factory programmable to any frequency
- Frequency stability as low as < ± 0.1 ppm over -40 to 105°C temperature range
- EMI reduction features
- Higher reliability than quartz
- No activity dip or cold start issues

MEMS Timing Solutions Oscilloscopes & Spectrum Analyzers

Featured products

Туре	Product	Frequency	Key Features	Key Values
Single ended oscillator	<u>SiT8208</u>	1 to 80 MHz	 Low jitter < 0.5 ps RMS¹ ±10 ppm to 50 ppm frequency stability Any frequency output FlexEdge[™] configurable output drive strength 1.8 V, 2.5 V, 3.3 V 	 Better frequency and jitter margin enhance system stability and robustness Easy availability of any device configuration Minimizes EMI from the oscillator
	<u>SiT8209</u>	80 to 220 MHz		
Differential oscillator	<u>SiT9366</u>	1 to 220 MHz	 Low jitter 0.23 ps RMS¹ LVPECL, LVDS, HCSL 2.5 to 3.3 V -40°C to 105°C 3.2 x 2.5 mm package 	 Meets demanding jitter requirements Small PCB footprint, easier layout Easy design due to flexibility MEMS reliability
	<u>SiT9367</u>	220 MHz to 725 MHz		
DCXO	<u>SiT3921</u>	1 to 220 MHz	Digital frequency control1 ppb resolution	 Eliminates need for external DAC to control a VCXO Better accuracy, lower noise due to digital control
	<u>SiT3922</u>	220 to 625 MHz		
Super-TCXO	<u>SiT5356</u>	1 to 60 MHz	 Low jitter: 0.31 ps RMS¹ ±0.1 ppm stability 1 ppb/°C -40°C to 105°C 	• Minimizes link drops due to shock, vibration, or temperature change
	<u>SiT5357</u>	60 to 220 MHz		
осхо	<u>SiT57xx</u>	1 to 60 MHz	 ±0.005 ppm stability -40°C to +85°C 	 I²C digital frequency tuning eliminates board noise 10 times better dynamic stability (150 ppt/°C ΔF/ΔT), resistant to airflow and thermal shock
Clock Generator	<u>SiT9514x</u>	8 kHz to 2.1 GHz	 up to 11 outputs 125 fs RMS¹ phase jitter 	Integration and performance

¹ 12 kHz to 20 MHz integration range

(ì)

Learn more about Industrial solutions from SiTime

SiTimeDirect Store

 \bowtie

Contact Us

Version 1.1 – Nov 2022

 $\ensuremath{\mathbb{C}}$ SiTime Corporation. The information contained herein is subject to change at any time without notice.