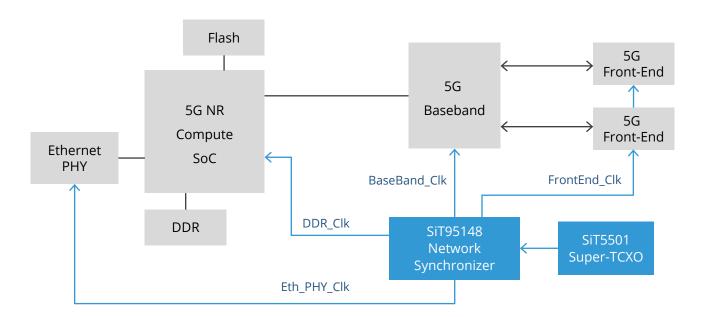
Precision Timing for Fixed Wireless Access (FWA)

5G FWA (fixed wireless access) provides ultra-high bandwidth to deliver heavy content at significantly faster speeds and at a lower cost to fiber and other fixed internet lines. While a seamless shift from traditional networks to 5G front and back haul is difficult to achieve due the large existing investment by the telecom operators in their 4G/LTE infrastructure, some companies are choosing to integrate 5G FWA fronthaul equipment with their 4G/LTE backhaul for a faster rollout and improved ROI.

Key Considerations


- Wide temperature range
- EMI resilience
- Temperature stability
- Low phase noise

The preferred mmWave band being deployed by most carriers is sub-6GHz.or the C-band, specifically 3.3 GHz to 4.2 GHz range as it covers a radius of more than 5 km and supports a maximum throughput of 5 Gbps.

Key reasons for 5G FWA growth are:

- Reduced connectivity costs: wireless infrastructure is lower cost than fixed wired infrastructure
- Faster speeds: 300 Mbps internet access is being touted with the expectation of reaching 1 Gbps
- Lower latency: 5G offers very low latency making it ideal for environments requiring dependable connectivity
- Lower energy use: 5G uses less energy to connect and transmit than alternative options

FWA Block Diagram

Precision Timing Solutions **Fixed Wireless Access (FWA)**

Featured products – please refer to <u>SiTime.com</u> or <u>contact us</u> for more options.

Туре	Product	Frequency	Key Features	Key Values
Network Synchronizer	<u>SiT95148</u>	1 to 220 MHz	 4 inputs, 11 outputs Up to 2 GHz clock output frequencies 120 fs integrated phase jitter¹ Programmable PLL loop bandwidth, 1 mHz to 4 KHz Digital frequency control -40°C to 85°C 9.0 x 9.0 mm package 	 Multiple clock domains, multiple clock outputs enables complex clock architectures 10x more resistant to vibration and board bending
Super-TCXO	<u>SiT5501</u> ²	1 to 60 MHz	 ±10 ppb stability ±0.5 ppb/°C 2x10⁻¹¹ Allan deviation -40°C to 105°C 7.0 x 5.0 mm package 	Ensures QoS requirements are met in Telecom Equipment in hostile environments
Differential Oscillator	<u>SiT9375</u> <u>SiT9501</u>	25 to 644.5 MHz, 70 fs Integrated Phase Jitter ¹ 25 to 644.5 MHz, 150 fs Integrated Phase Jitter ¹	 ±20 ppm to ±50 ppm frequency stability LVPECL, LVDS, HCSL 1.8 V to 3.3 V -40°C to 105°C 2.0 x 1.6 mm, 2.5 x 2.0 mm, 3.2 x 2.5 mm packages 	 Meets demanding jitter requirements Small PCB footprint, easier layout Easy design due to flexibility MEMS reliability
Clock Generator	SiT91211 ³ SiT91213 ³	1 to 750 MHz, 200 fs Integrated Phase Jitter ¹ 1 to 750 MHz, 90 fs Integrated Phase Jitter ¹	 4 differential output clocks ±20 ppm frequency stability LVDS, LVPECL, LPHCSL 0.01 ps/mV PSRR -40°C to 105°C 4 mm x 4 mm package 	 Simplifies clock tree design with multiple low jitter clocks Programmable clocks add flexibility to complex clocking architectures Better frequency stability and noise immunity in harsh environments Small PCB footprint, compact layout

¹ 12 kHz to 20 MHz integration range; ² <u>Contact SiTime</u> for higher frequencies. ³ <u>Contact SiTime</u> for availability.

Precision Timing Solutions Fixed Wireless Access (FWA)

SiTime advantages:

SiTime devices offer the following advantages over quartz crystals, which are particularly important for telecom applications:

- SiT9514x family of synchronizer devices offer a complete synchronization clock tree on a chip. No external crystal is required.
- dF/dT, the effect of temperature variation on frequency stability, is 4x better than crystal-based TCXOs. This ensures better quality of service under airflow, heating, and cooling conditions.
- Silicon MEMS TCXOs offer similar stability as crystal-based OCXOs, at smaller form factor and lower power
- SiTime oscillators are factory programmable to any frequency.
- Silicon MEMS-based timing devices have a 30x higher reliability than quartz.
- No activity dip or cold start issues.

