

Precision Timing Solutions

Energy Storage Systems (ESS)

Precision Timing in Energy Storage Systems

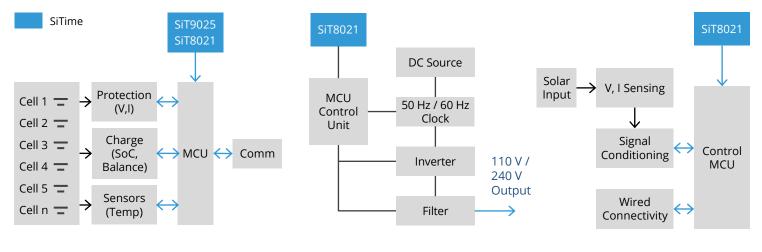
Energy storage systems (ESS) sometimes also referred to as battery energy storage Systems (BESS), are devices that enable energy from renewables, like solar and wind, to be stored and then released on demand. A typical ESS consists of a battery pack, an inverter, a power optimizer, plus a battery management system (BMS) to monitor the health of the cells.

Key Considerations

- Small form factor
- Wide temp range
- EMI resilience
- Temp stability

ESS systems can be configured in four ways depending on whether they operate off grid or with a grid tie-in. The four general configurations are:

Off-Grid: AC coupled


Grid Tie-In: AC coupled

Off-Grid: DC coupled

Grid Tie-In: DC coupled

These systems need to withstand the elements as they are subjected to temperature variations, which can be extreme depending on where they are deployed. This requires designs to be rugged. SiTime timing solutions, with temperature stability and extended temp capability, are an ideal solution whether you're designing a BMS, an inverter, or power optimizer as shown below.

Block Diagrams

Battery Management System (BMS)

Inverters

Power Optimizer / Regulator

SiTime advantages:

All SiTime devices offer the following advantages over quartz crystals, which are particularly important for Industrial applications:

- Factory programmable to any frequency
- Higher reliability than quartz

- No activity dip or cold start issues
- Wide operating temp (-40°C to 105°C)

Precision Timing Solutions

Energy Storage Systems (ESS)

Featured products – please refer to <u>SiTime.com</u> or <u>contact us</u> for more options.

Туре	Product	Frequency	Key Features	Key Values
Single-ended oscillator	<u>SiT8021</u>	1 to 26 MHz	 -40°C to +85°C ±20 ppm stability 1.5 x 0.8 package 	High reliabilityExtended temperature rangeSmall footprint
	<u>SiT9025</u>	1 to 150 MHz	 Up to -55°C to +125°C Spread spectrum Configurable rise / fall times 2016, 2520, 3225 packages 	High reliabilityExtended temperature rangeEMI Reduction
Differential oscillator	SiT9376	1 to 220 MHz	 Low jitter: < 150 fs RMS¹ ±30 or ±50 ppm stability LVPECL, LVDS, HCSL, Low-power HCSL, FlexSwing™ -40°C to +125°C 2016, 2520, 3225 packages 	High reliabilityLow jitter
	SiT9377	220 to 920 MHz		
Super-TCXO DCXO/ VCXO	<u>SiT5356</u>	1 to 60 MHz	 ±0.1, ±0.2, ±0.25 ppm stability ±1 ppb/°C frequency slope -40°C to 105°C Low jitter: 0.31 ps RMS¹ Optional voltage or digital frequency control 	 High accuracy Excellent frequency stability even with fast temperature gradients
	<u>SiT5357</u>	60 to 220 MHz		
32.768 kHz oscillator	SiT1811	32.768 kHz	 ±20, ±50, ±100 ppm stability 1.14 to 3.63 V supply < 490 nA consumption Up to -40°C to +105°C 1.2 x 1.1 mm < 115 ms startup time 	 Low power Small footprint Excellent stability Faster startup time than 32.768 kHz tuning-fork crystal enables faster system startup

 $^{^{\}rm 1}$ 12 kHz to 20 MHz integration range

