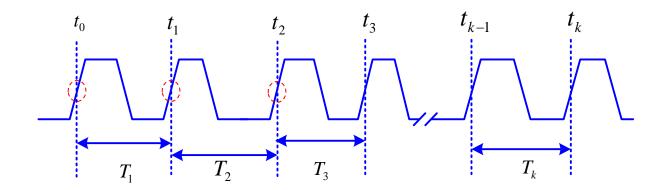


SiTime University Turbo Seminar Series

How to Measure Clock Jitter – Part 3 C2C Jitter and Long Term Jitter

May 13, 2013

The Smart Timing Choice™


What is Clock Jitter

- Jitter is, "The deviation of an event timing relative to its ideal value"
 - **Event?** defined by specific type of jitter
 - Ideal value? event timing on an ideal clock, often estimated from average value of the event
- Jitter definitions:
 - Period Jitter (Covered in Part 1)
 - Deviation of the clock period from averaged value
 - Timing Interval Error (TIE) Jitter and Phase jitter (Part 2)
 - Error in edge location relative to an ideal clock
 - Cycle-to-Cycle Jitter (Part 3)
 - Deviation of the difference of periods of two consecutive clock cycles
 - Long Term or Multi-Cycle Jitter (Part 3)
 - Deviation of the durations of multiple cycles from the averaged value
 - Also known as long term jitter or accumulated jitter

Jitter Definitions and Terminology Cycle-to-cycle Jitter (C2C)

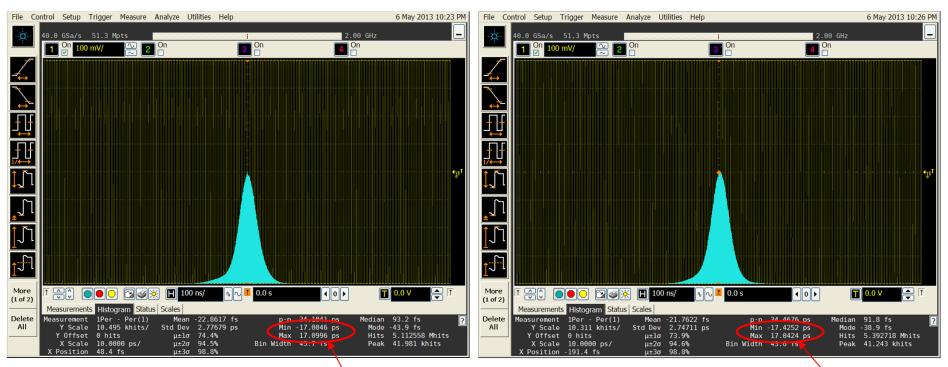
- Cycle-to-cycle jitter: the difference of one period and its adjacent one
 - Event: Three consecutive rising or falling edges
 - Ideal value = average C2C

$$\begin{split} J_{CC+}(k) &= T_k - T_{k-1} & J_{CC-}(k) = T_{k-1} - T_k \\ &= t_k - 2t_{k-1} + t_{k-2} \\ &= TimeJ(k) - 2.TimeJ(k-1) + TimeJ(k-2) \end{split}$$
 Relate C2C to TIE or Timing Jitter

About C2C Jitter

- C2C jitter is the difference of two adjacent clock period and it dominated by the high frequency jitter
- Can be measure by real-time oscilloscope
- C2C jitter is not sensitive to low frequency jitter or slow frequency modulation of oscillator frequency
 - Often Used to specify jitter intrinsic jitter performance of spread spectrum clocks
- C2C jitter is not the same as "Cycle Jitter"
 - Cycle Jitter is the same as "Period Jitter"

C2C Jitter in a Spread Spectrum Clock



- C2C jitter changes little with spread spectrum clock (SSC) mode enabled or disabled
- C2C jitter is not sensitive to low frequency phase noise

SiT9001-125MHz SSXO with 2% down spread

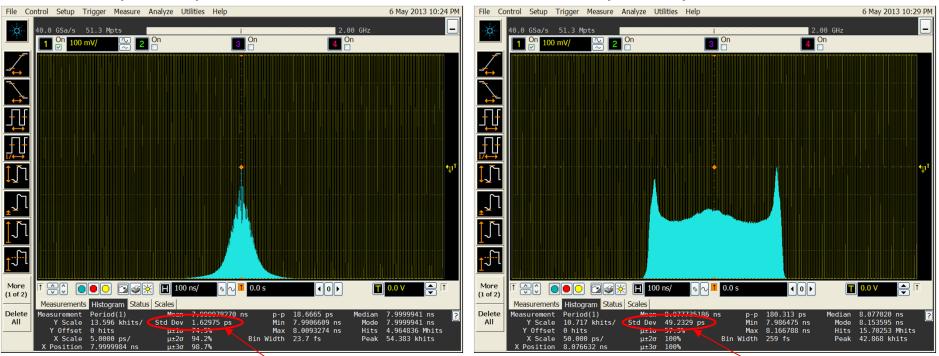
Spread Spectrum Disabled

Spread Spectrum Enabled

C2C jitter 17ps max

C2C jitter 17ps max

Period Jitter in a Spread Spectrum Clock Si Time

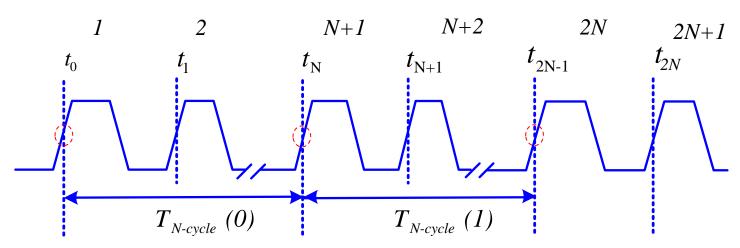


- Period jitter changes significantly when SSC enabled
- C2C jitter is the difference of two adjacent periods and it remains steady with slow SSC frequency modulation.

SiT9001-125MHz SSXO with 2% down spread

Spread Spectrum Disabled

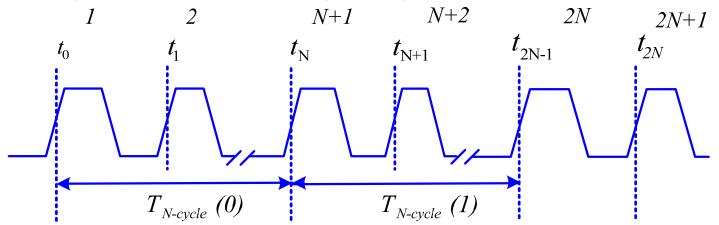
Spread Spectrum Enabled



Period jitter 1.63 ps rms

Period jitter 49 ps rms with SS

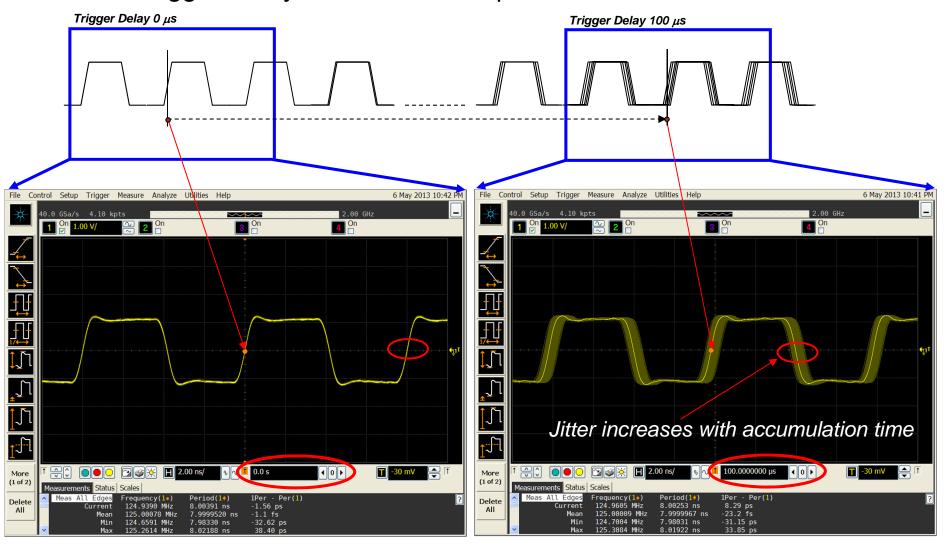
Jitter Definitions and Terminology Long Term Jitter (LTJ)


$$LTJ_{N-cycle}(i) = T_{N-cycle}(i+1) - T_{N-cycle}(i)$$

- Long term jitter: variations of timing intervals between the first edge and the last edge of N consecutive clock cycles.
 - Also known as "accumulated jitter" or "N-cycle jitter"
 - Can be specified by accumulation time of N-cycle, for example:
 - LTJ@100 μs for 100 MHz clock means N = 10,000
 - LTJ@10 μs for 62.5 MHz clock means N = 625

Jitter Definitions and Terminology

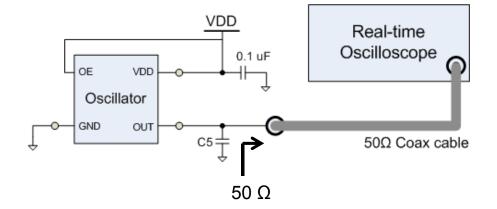
Long Term Jitter (LTJ)


$$\begin{split} LTJ_{N\text{-}cycle}(i) &= T_{N\text{-}cycle}\left(i+1\right) - T_{N\text{-}cycle}\left(i\right) \\ &= \left(t_{i+N} - t_{i}\right) - N \times T_{C} \end{split} \qquad \begin{aligned} &\text{Ideal value = Number of cycles (N) *} \\ &= v_{i+N} - v_{i} - v_{i$$

 Long term jitter: sensitive to low frequency phase noise integrated over long accumulation time

Observe LTJ on Real Time Scope

Set "Trigger Delay" to observe 100 μs LTJ of a 125 MHz clock


SiT9001-125 MHz SSXO with spread spectrum disabled

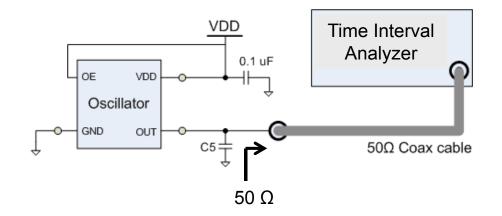
LTJ Measurement Setup with Real-Time Oscilloscope

Setup:

Direct connection to oscilloscope 50Ω loading to the oscillator output

Measure LTJ with Real Time Oscilloscope

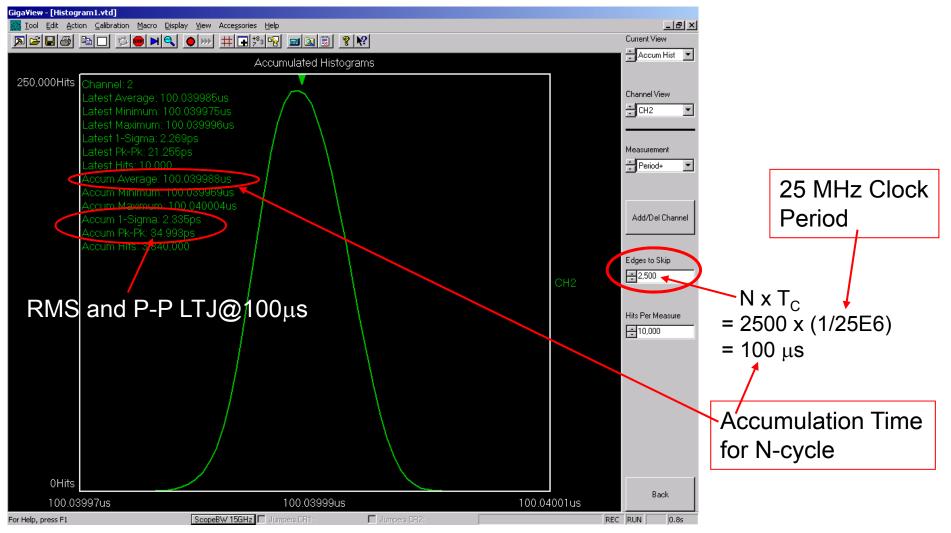
- Use oscilloscope with low time base error (< 0.5 ps rms)
- Optimize oscilloscope settings to reduce measurement error
- High sampling rate increases the sample size and slows down measurement


LTJ Measurement Setup with Time Interval Analyzer (TIA)

Setup:

Direct connection to TIA 50Ω loading to the oscillator output

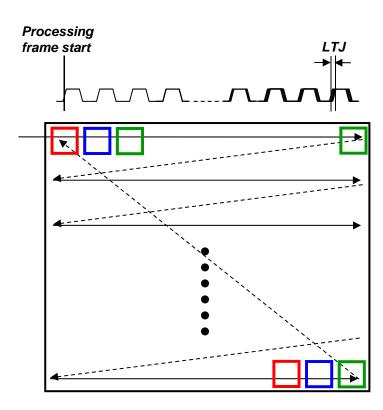
SiTime jitter measurement setup


Measure LTJ with TIA

- Based on counter-timer approach
 - Can achieve high equivalent time base resolution in sub-ps range
- Sampling rate on input clock signal much lower than real-time scope
- Achieve faster LTJ measurement for long accumulation time
- Can also be used for serial link diagnostics and compliance testing

Measure LTJ on TIA

Set N = 2500 to measure LTJ@100 μs on a SiT8208-25 MHz clock



TIA Model: Wavecrest SIA-4000

Who cares about LTJ

- Applications that require synchronization of timing events over relatively long time interval or many clock cycles
 - Analog and digital video
 - DDR for achieving phase locking in DDR interface

Summary

- C2C jitter reflects the high frequency jitter of the clock signal and is not sensitive to slow frequency modulation of a spread spectrum XO
- Long term jitter, defined by accumulation time or N-cycle, is sensitive to low frequency phase noise
- Applications care about LTJ when multiple timing events need to be synchronized over relatively long time interval

Contact Information

- For Questions, contact SiTime Technical Support Technicalsupport@sitime.com
- For Turbo Webinar pdf Downloads on SiTime's Web Site www.sitime.com/support/sitime-u/turbo-webinars
 - •All new webinars will be posted within 24-hours
- For app notes and other info, visit

http://www.sitime.com/support/application-notes