Si Time[™]

SiTime University Turbo Seminar Series

July 29-30 2013 SiTime MEMS Advantages

The Smart Timing Choice[™]

Agenda

- Benefits of SiTime's MEMS Fabrication Process
- Advantages of Silicon MEMS
- Design for High Q and low Stress Sensitivity
- Best Resistance to Shock and Vibration
- World Class Reliability

Silicon MEMS is Best for High Volume

Silicon MEMS

High volume, multi-sourced, scalable

- Capital-Lite
 - Standard fabs
 - TSMC, Bosch, Tower-Jazz
- Plastic packages, multi-sourced
 - Carsem, ASE, UTAC
- Smaller is cheaper, more robust

Quartz

Complex, single-sourced

- Capital intensive
 - Specialized lines by package
 - Scale only by adding factories
- Ceramic packages one supplier controls 80% of supply
- Smaller is costly, more fragile

Quartz Resonator in 2.0 x 1.2mm SMD Pkg

Quartz Resonator in 1.6 x 1.0mm SMD Pkg

Advantages of Single Crystal Silicon Resonators

- Single Crystal Silicon resonators are compatible with standard CMOS processing
 - Enables fabless models and massive production scaling
 - Moore's law advantage
- Single Crystal Silicon resonators can withstand very high encapsulation temperatures
 - Eliminates contaminants from resonator cavity
- Ultra-clean encapsulation means no frequency drift
 - Chemically and thermally scrubbed Silicon surface
 - Epitaxial reactor is designed to grow ultra-pure silicon crystals without defects

Advantages of Single Crystal Silicon Resonators

- EpiSeal Encapsulated single crystal silicon resonators do not drift
 - Other technologies require the use of metals, amorphous materials, polycrystalline materials, and epoxies.
 - Introducing other materials may cause fatigue or stress relaxation leading to frequency change and reliability issues.
- Single crystal silicon is an extremely repeatable and resilient material
 - Enables single-point room-temperature calibration
 - Outstanding mechanical toughness, stiffer than Quartz

Design of Resonators for Best Performance: Stress

- Anchor placement minimizes stress sensitivity
- Mechanical coupling between anchor and resonator reduces stress effects
- Resonator system design corrects for stress

Design of Resonators for Best Performance: Optimizing Q

- Resonator design adjusted to minimize Thermal Elastic Dissipation (TED)
- Resonator design adjusted to minimize Anchor Losses
- In-plane definition of features allows SiTime to tailor connection to anchors – difficult to achieve in quartz (epoxy attachment)

SiTime MEMS Oscillators are Inherently Robust Against Shock & Vibration

Proprietary Design

- Our Resonators are Designed Specifically for Low Sensitivity to Any External Mechanical Acceleration
- Single-Point, Center Anchored MEMS Resonator Virtually Eliminates Stress Error Sources

SiTime MEMS Oscillators are Inherently Robust Against Shock & Vibration

The resonator moving mass is extremely small \rightarrow Large acceleration needed to cause sufficiently large force

SiTime MEMS Resonator Mass is 1000-to-3000 Times Smaller Than Quartz!

SiTime MEMS Oscillators are Inherently Robust Against Shock & Vibration

The resonator structure operates like a very stiff spring→ Very difficult to affect through external force.

>1M g needed before resonator touches any surfaces. 55,000 times greater than a Howitzer Cannon!

SiTime MEMS are Insensitive to Vibration **SiTime**

ppb/g error is calculated from the measured phase noise spurs at different vibration frequencies.

Best Quality and Reliability: Leveraging Si Time Outstanding Design, Materials, and Processes

Metric	Actual
DPPM based on Customer Returns	0.14 DPPM Based on 150 Million Units Shipped Below 100 DPPM is World Class
FIT	2 FIT 500 Million Hours 15x Better than Quartz

Summary

- Best High Volume Manufacturing Because...
 - Leverages existing CMOS manufacturing equipment and processes
 - No investment in customized manufacturing line
- Best in Performance Because...
 - Single Crystal Silicon is a superior performing material
 - Resonators are designed for low stress sensitivity and high Q
- Best Shock & Vibration Because...
 - Smaller and Stiffer MEMS resonator vs Quartz
 - Center Anchored MEMS Design
 - For more performance details, see the December 2012 webinar
- Best Reliability—Because we are 100% Silicon
 - 500MHr MTBF (2 FIT)

Contact Information

• For Questions, contact SiTime Technical Support

Technicalsupport@sitime.com

- For *Turbo Webinar* pdf Downloads on SiTime's Web Site
 <u>www.sitime.com/support/sitime-u/turbo-webinars</u>
 - All new webinars will be posted within 1-week
 - For a list of part numbers used for each test, contact SiTime Technical Support at the email address listed above.