

SiTime University Turbo Seminar Series

Silicon Oscillator Frequency Characteristics and Measurements

February 25, 2013

The Smart Timing Choice[™]

Agenda

- Oscillator frequency stability: MEMS vs. Quartz
- Common questions on frequency stability specs
- How to make accurate frequency measurement for oscillators

Frequency Stability

- Frequency Stability
 - Defined as relative variation of frequency from nominal
 - Expressed in part per millions (PPM)

- Lower frequency: 100 MHz 100 PPM = 99.99 MHz
- Upper frequency: 100 MHz + 100 PPM = 100.01 MHz
- Components of Frequency Stability
 - Initial tolerance: Stability <u>only</u> at room temperature, nominal VDD & load
 - Temperature: Frequency variation over operating temperature
 - Voltage: Frequency variation over power supply voltage variations
 - Aging: Frequency variation over long time expressed in PPM / year

 $F_{sta} = \frac{\Delta f}{f} = \frac{f - f_{nom}}{f_{nom}}$

Frequency Stability vs. Temperature: SiTime MEMS vs. Quartz Oscillators

MEMS XO

Nearly linear across temperature
Can achieve tighter tolerance over wider temp range

Quartz XO

- 3rd order curve characteristics
- Steep change outsides operating range.
- Depending on orientation of the crystal cut
 - Hard to achieve wider temp range.

Frequency Stability vs. Temperature: SiT8208/9, SiT9120/1/2, SiT1602 Series

SiT1602

5

Frequency Stability vs. Temperature: SiT5000 ±2.5ppm TCXO

Frequency Stability vs. Supply Voltage: SiTime MEMS vs. Quartz Oscillators

SiT1602 / SiT8008

Quartz Oscillators from 3 vendors

SiTime MEMS XO has on-chip voltage regulator to achieve better performance

Common Questions on Frequency Stability **Strime**

 Do SiTime MEMS oscillators frequency vs. temperature characteristics depend on output frequency? No

Common Questions on Frequency Stability Si Time

 Can SiTime MEMS oscillators achieve aging specs better than Quartz? YES

Frequency Measurement Frequency Counter Principle

Average frequency measurement

- Modern frequency counter use time interval measurement over a number of clock cycles to measure frequency
 - Time internal measurement as accurate as 20ps pk-pk
 - Resolution independent of clock frequency

Frequency Measurement Accuracy

Time base stability

- OCXO: 0.1ppm to 1ppm
- High-end OCXO: 0.01 to 0.1 ppm
- Rubidium: 1 part-per-billion (ppb)
- GPS-disciplined: 0.01 ppb
- Require calibration if not GPSdisciplined

SiTime Uses GPS-disciplined TB:

Accurate and Consistent across test / manufacturing sites Time interval error

- 20 ps to a few ns (pk-to-pk)
 - < 200 ps for modern counters
- Resolution independent of input clock frequency
- Resolution improves as gate time increases
- Example: $T_{Gate} = 100 \text{ ms}, \Delta TI = 100 \text{ ps}$

 $Resolution = \frac{100 \times 10^{-12}}{100 \times 10^{-3}} = 1 \ ppb$

SiTime Recommendation:

Use 100 ms gate time by default

Sources of Measurement Error

Poor Connection to Frequency Counter

Trigger Error

- Noise or waveform distortion on input clock signal causing frequency measurement error
- Affected by probe setup and/or impedance mismatch

Proper Connection to Frequency Counter

Loading Effect on Oscillator

- Counters have 50 ohm or Hi-Z inputs
- Driving 50 ohms load can increase oscillator IDD significantly
 - Increased IDD means more power dissipation and higher die temperature
- Driving high-impedance counter inputs can cause significant reflections → possible frequency measurement error

Connecting oscillator output to 50ohm input; Coaxial cable terminated at the counter

Connecting oscillator output to Hi-Z input; Coaxial cable terminated at the source

How to Make Accurate Frequency Counter **SiTime** Measurement?

- Choose proper Gate Time (>100 ms)
- Use good internal time-base option (<0.1ppm OCXO), or
 - Use external frequency reference for accurate and repeatable measurements across instruments (GPS-disciplined sources)
- Use probe setup that minimizes loading to oscillator and provides good signal integrity

Contact Information

- For Questions, contact SiTime Technical Support <u>Technicalsupport@sitime.com</u>
- *Turbo Webinar* pdf downloads on SiTime's web site
- Webinar recordings are posted on SiTime's web site

www.sitime.com/support/sitime-u/turbo-webinars

• All new webinars are posted within 24 hours