
Precision Timing in Automotive Cameras

If ADAS (advanced driver assistance system) computers are the brains of tomorrow's self driving cars, cameras are their eyes. Modern vehicles have more than 10 cameras, covering various functions such as 360° vision (self-driving), driver monitoring, backup camera, seat occupancy detection, etc.

Key Considerations

- Reliability, Functional Safety
- Low jitter
- High temperature
- Fast system start-up
- EMI

Block Diagram

SiTime

Cameras are built around an imager, of varying resolution depending on the camera's purpose. After some processing, the data stream is sent to the vehicle's ADAS computer by means of a serial interface. The most common kinds of PHY are MIPI A-PHY (Valens), FPDLink (TI), and GMSL (Analog Devices). Both imager and PHY require a high quality, low jitter clock to operate.

Cameras are usually complemented with radar, lidar and infrared sensors.

See also the Application Brief on ADAS Computer.

MEMS Timing Solutions

Automotive Cameras

Featured products – please refer to the <u>Selector Guide</u> for more options

Туре	Product	Frequency	Key Features	Key Values
Single-ended oscillator	<u>SiT8924</u>	1 to 110 MHz	 Up to -55°C to +125°C ±20 ppm stability 2016, 2520, 3225 packages 	 High reliability Extended temperature range EMI reduction features Small footprint Low power Low jitter enables highest speed links
	<u>SiT9025</u>	1 to 150 MHz	 Up to -55°C to +125°C Spread spectrum Configurable rise / fall times 2016, 2520, 3225 packages 	
	<u>SiT1625</u>	44 standard frequencies incl. 25 MHz (SiT1625A) and 27MHz (SiT1625C) for FPD-Link IV ADAS and Infotainment	 -40°C to +125°C ±25, ±30, ±50 ppm stability 1612, 2016, 2520, 3225 packages 500 fs RMS jitter¹ 2.3 mA typ. current consumption 	
Differential oscillator	<u>SiT9396</u>	1 to 220 MHz	 Low jitter: < 150 fs RMS¹ ±30 ppm or ±50 ppm stability LVPECL, LVDS, HCSL, Low-power HCSL, FlexSwing™ -40°C to +125°C 2016, 2520, 3225 packages 	 High reliability Low jitter Enables interfaces with demanding jitter requirements, such as PCI-Express and 10 GB Ethernet
	<u>SiT9397</u>	220 to 920 MHz		
Super-TCXO DCXO/ VCXO	<u>SiT5386</u>	1 to 60 MHz	 1 to 220 MHz ±0.1, ±0.2, ±0.25 ppm stability ±1 ppb/°C frequency slope -40°C to 105°C Low jitter: 0.31 ps RMS¹ Optional voltage or digital frequency control 	 High accuracy Excellent frequency stability even with fast temperature gradients No GNSS signal loss or V2X disconnect, as the MEMS resonator is not subject to "micro-jump" like crystal oscillators
	<u>SiT5387</u>	60 to 220 MHz		

MEMS Timing Solutions

Automotive Cameras

Key concerns of designers:

- Reliability
- Functional safety
- High temperature requirements
- Fast system startup time required (usually < 100 ms)
- EMI

SiTime advantages:

All SiTime devices offer the following advantages over quartz crystals, which are particularly important for Automotive applications:

- Up to 50x better reliability: Apart from reducing the amount of field failures, the better reliability translates into a lower FIT rate. This provides better Hardware Safety metrics in an FMEDA, the quantitative analysis required as part of a Functional Safety assessment.
- Up to 100x better resilience to shock, vibration and electromagnetic interference, due to the smaller size (0.4 x 0.4 mm) and lower mass of MEMS resonators compared to crystals.
- Better frequency stability (down to ± 100 ppb) and frequency response to temperature changes dF/dT (down to < 3.5 ppb/°C). These characteristics provide better locking to GNSS and V2X, and reduced connection drops.
- SiT9025 features EMI reduction features: spread spectrum and configurable rise/fall times

