HiTime

Cascade DCO Configuration

Application Note

Contents

1 SiT9514x DCO configurationccccceeeiieeniiienniirennieienecerenseerensesrenseesensessensessnnsesens 3
1.1 (CT=TT=T = e [T o] 14 Lo o PSPPSR 3
1.2 NGV (T LU =R 3
1.3 INEFOAUCTION i ettt e e st e e s st e e sabe e e sbbeeesbbeeesaseeessaneeennns 3
R S AV oY o] [ToF1 o 11 1 Y 2P PPUPPTPPP 3
2 DCO code calculation for predefined frequency change..........cccccceveeiirenniiiennnnnee. 4
2.1 Calculation of DCO fractional and integer code in sync Modeocevveeieeeiiiiiciccicirrrree e, 4
2.2 Calculation of DCO fractional code in free-run Modeccceeeriiiiiniiiieniieeeee e 6
3 Steps to perform DCO.......ccciiieeiiieeiereeerrenerrnncrensserensssrsnsserenssssenssssnnsessnnsessnnns 8
3.1 DCO increment and decrement USING FeZISTEIS.....uiviuiiiiiiiriiiiee ettt e e s srare e e ssarre e e e s s 8
3.2 DCO increment and decrement using FINC and FDEC PiNSccoooveiciiiiiiiiriieeeee e eeecccevveeveneen 9
4 Minimum pulse width, maximum update rate, DCO range and step size........... 14
4.1 DCO iN SYNC MOUE wevveeiieiieeieeeeeieeccctirrreee e et e et eee e e s s s bbbbbeareeetaeeeeeeeesessassssssssaesereseeeeeseeesnnsanssrnes 14
4.2 DCO iN frE@-TUN MOE ...ttt e et e e s et e e e e s b e e e e ssaaaeeeesssasaaeeesesnsaeeaeean 14
5 DCO output readback procedurecccciveiiiieiiiiiiiiiiinier e eees 15
5.1 FrE@-TUN MOGE ...ttt e e sttt e e e e st e e e s s bt e e e e s s sbbteeesssabaaeeesesanreeeeennn 15
5.1.1 DCO free-run debug readback SEQUENCEoiiieiiiie et ee e et e e e tree e e e aeeas 15
5.2 R}V ol 4 o Yo 1SRRI 18
5.2.1 DCO sync mode debug readback SEQUENCEcoiiiiiiiiiiiiiit ettt e s e e s e sbae e e s e neeas 18
(ST 5111 4T o] (2 ofo Lo [T RN 22
6.1 DCO through register map (SiT9514x, sync mode profile)cccccvveeevveeieiiieeciie e 22
6.2 DCO through pins (SiT9514x, sync Mode Profile)cceeeeieeiiiiiiecee e 23

SiT9514x AN20002 Rev. 1.2 07 Feb 2022 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e

6.3 DCO through register map (SiT9514x, free-run mode profile)cccouveeeeeciiiieeieciiieee e, 25
6.4 DCO through pins (SiT9514x, free-run Mode Profile)......cccceeeieeieeiieiieiicciieeeeeeeee s 26
7 & Y 41 <3 (T =N 28
8 ReViSiON hiStOry.......iiiiiiiiiiiciiciciiiiiiii e 29
Figures

Figure 1: Output frequency Update in SYNC MOGE......cccuiiiiiiiiiiee et e s e e e s e sabee e s s snreeas 14
Figure 2: Output frequency update in free-run MOEccovciiiiiiiiiiie e e e e s 14
Tables

Table 1: PLL DIVN2 divider CONfiGUIatioN.........ciiiiiiiieiiciiie ettt s e e e e s atae e e e e aba e e e e s abaee e e ennbeeeeeennraeas 5
Table 2: PLL DIVN divider register CONfIGUIatioNncccuiieiiiiiiie et e e te e e e rr e e e e eab e e e e nraeas 7
Table 3: Registers required for DCO — SIT95141/SiTO5145/SITOS1A8ccuvieecreeeceeeereeeecieeeeteeeereeeereeesrreeeeanee s 10
Table 4: Registers required for DCO — SITO5147uviiiiiciiie et e et e e e ertte e e e e stre e e e e ratae e s e e snbae e e e esbaeeseennreeas 12
Table 5: Readback registers comparison with DIVN_INT_COMPARE..........ccccocviiieieiiiie e eecieee e eeree e eiree e e e 16
Table 6: Read back registers comparison with DIVN_FRAC_COMPAREcccivteiiiiieeeeecieee e ccreee e e eireee e eenreeas 17
Table 7: Readback registers comparison with DIVN2 INT COMPARE..........cccooiiiiieieiiiee e eeree e eeree e e 19
Table 8: Readback registers comparison with DIVN2_FRAC_NUM_COMPAREccccceeeeiiiiieeeiieeeeeeieee e 20
Table 9: Readback registers compare with DIVN2_FRAC_DEN_COMPARE..........cccoeiiiieeiiee et 21
Table 10: Revision history of this dOCUMENTcccciiiiiiee e e e e e e e abee e e e araeas 29

SiT9514x AN20002 Rev. 1.2 Page 2 of 30 www.sitime.com

Application Note . .
Cascade DCO Configuration m TI I I Ie
1 SiT9514x DCO configuration

1.1 General description

This application note details the SiT9514x DCO configuration procedures. DCO configuration to control
frequency through pins and register updates is described along with the example codes to illustrate the
programming sequence in detail.

1.2 Key features

e DCO in sync mode configuration
e DCO in free-run mode configuration

1.3 Introduction

Digitally controlled oscillator (DCO) mode of operation is used for changing the output frequency of a PLL using
either software control on the serial interface or pin control. A predefined change in frequency can be
programmed for each PLL. After that, an increase (FINC) or decrease (FDEC) command can be given to the PLL
to make the change in output frequency effective. Alternatively, appropriate GPIOs are chosen for the trigger of
the DCO function. A low-to-high transition (as an edge detect) is used to trigger the DCO increment or
decrement. Any relative change in frequency from as fine as 5 ppt to as coarse as 100 ppm is available in DCO
mode.

DCO mode is available in both free-run and synchronized (sync) modes of operation. It can be accessed from
both pin control and from register map. This application note provides the detailed procedures for DCO sync
mode and free-run mode from pin control and register map control.

1.4 Applicability

This document and references within to SiT9514x apply to the SiT95141, SIT95145, SiT95147, and SIT95148
devices, except where noted otherwise.

SiT9514x AN20002 Rev. 1.2 Page 3 of 30 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e

2 DCO code calculation for predefined frequency change
The DCO code should be calculated and written into the appropriate registers to achieve the predefined change
in frequency while doing a DCO increment or decrement as desired by the user.

The calculation is largely dependent on whether the PLL is running in sync mode or free-run mode. The
following sections describe the DCO code calculation in both sync mode and free-run mode.

2.1 Calculation of DCO fractional and integer code in sync mode

The DCO control word has fractional and integer code components that are computed based on the desired
DCO frequency step (ppm) and the feedback divider value DIVN2.

Step 1: DIVN2 calculation

The DIVN2 can be calculated by obtaining the values of PLL_DIVN2_INT (integer part),
PLL_DIVN2_FRACNUM (fractional part—numerator), and PLL_DIVN2_FRACDEN (fractional part —
denominator) from the register mentioned in the table PLL DIVN2 divider configuration.

DIVN2 = PLL_DIVN2_INT + PLL_DIVN2_FRACNUM / PLL_DIVN2_FRACDEN (refer this value from
the . nvnm file)

Note:
e PLL_DIVN2_INT: 21-bitinteger

e PLL_DIVN2_FRACNUM: signed 32-bit (two’s complement)
e PLL_DIVN2_FRACDEN: unsigned 32-bit

SiT9514x AN20002 Rev. 1.2 Page 4 of 30 www.sitime.com

Application Note H .
Cascade DCO Configuration I m e

Table 1: PLL DIVN2 divider configuration

Page number Register address Bit number Description
ox1d 7:0 PLL_DIVN2_INT [7:0]
Oxle 7:0 PLL_DIVN2_INT [15:8]
Oox1f 4:0 PLL_DIVN2_INT [20:16]
0x20 7:0 PLL_DIVN2_FRACNUM [7:0]
0x21 7:0 PLL_DIVN2_FRACNUM [15:8]
PLL page
0x22 7:0 PLL_DIVN2_FRACNUM [23:16]
(Any one of the four pages A, B, C, or D)
0x23 7:0 PLL_DIVN2_FRACNUM [31:24]
0x24 7:0 PLL_DIVN2_FRACDEN [7:0]
0x25 7:0 PLL_DIVN2_FRACDEN [15:8]
0x26 7:0 PLL_DIVN2_FRACDEN [23:16]
0x27 7:0 PLL_DIVN2_FRACDEN [31:24]

Step 2: DCO code calculation

The DCO code value can be calculated from the predefined frequency change (dco_ppm) and the DIVN2
value calculated in the previous step.

DCO code=DIVN2 x dco_ppm * le-6

PLL_DCO_INT = Integer part of DCO code

PLL_DCO_FRAC = (dco_code - PLL_DCO_INT)* PLL_DIVN2_FRACDEN # Fractional part of dco_code
Note:

e PLL_DCO_INT: 10-bit number
e PLL_DCO_FRAC: 32-bit number

SiT9514x AN20002 Rev. 1.2 Page 5 of 30 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e

Example calculation:

dco_ppm = 10 ppm,
PLL_DIVN2_INT = 860,
PLL_DIVN2_FRACNUM
PLL_DIVN2_FRACDEN

343597380,
2147483625 (from .nvm file)

PLL_DIVN2_FRACNUM_SIGNED = twos_comp_to_signed_int (PLL_DIVN2_FRACNUM, 32) =
343597380

DIVN2 = PLL_DIVN2_INT + PLL_DIVN2_FRACNUM_SIGNED / PLL_DIVN2_FRACDEN
= 860 + 343597380/2147483625

dco_code = DIVN2 * dco_ppm * le-6

= (860 + 343597380/2147483625) * 10 * le-6

PLL_DCO_INT = floor (dco_code+0.5) = 0

PLL_DCO_FRAC = floor ((dco_code - PLL_DCO_INT) * PLL_DIVN2_FRACDEN)
= floor ((dco_code - 0) * 2147483625) = 18471795

Note:
e twos_comp_to_signed_int (Number, Word length) — A Python function use to convert two’s
complement to signed integer.

e floor (number) — A Python function used to return the closest integer value which is less than or equal
to the given numeric value.

2.2 Calculation of DCO fractional code in free-run mode

The DCO control word has fractional and integer code components that are computed based on the desired
DCO frequency step (ppm) and the feedback divider value DIVN.
Step 1: DIVN calculation

The DIVN value can be calculated by obtaining the values of PLL_DIVN_INT (Integer part),
PLL_DIVN_FRAC_SIGNED (Fractional part - Numerator) from the register mentioned in the
table below.

DIVN = PLL_DIVN_IN + PLL_DIVN_FRAC_SIGNED/2"32 refer this value (from .nvm file)
Note:

e PLL_DIVN_INT: 9-bit
e PLL_DIVN_FRAC: Signed 32-bit (two's complement, LSB 8 bits are 0)

SiT9514x AN20002 Rev. 1.2 Page 6 of 30 www.sitime.com

Application Note H .
Cascade DCO Configuration I m e

Table 2: PLL DIVN divider register configuration

Page number Register address Bit number Description
0x17 6:0 PLL_DIVN_INT[6:0]
0x18 4 PLL_DIVN_INT[7]

PLL page
Oxla 7:0 PLL_DIVN_FRAC[15:8]
(Any one of 4 pages A, B, C, or D)
0X1b 7:0 PLL_DIVN_FRAC[23:16]
Ox1c 7:0 PLL_DIVN_FRAC[31:25]

The DCO code can be calculated from the predefined frequency change (dco_ppm) and the DIVN value
calculated in the previous step.

dco_code = DIVN * dco_ppm * le-6 x 2732
PLL_DCO_FRAC = floor (dco_code)
Note:

e PLL_DCO_FRAC: 32-bit number

Example calculation

DCO step required, dco_ppm = 10 ppm, PLL_DIVN_INT=67, DIVN_FRAC = 553573376
(from .nvm file)

PLL_DIVN_FRAC_SIGNED = twos_comp_to_signed_int (DIVN_FRAC, WL_frac) = 553573376
DIVN = PLL_DIVN_INT + PLL_DIVN_FRAC_SIGNED/2732

67+553573376/2/32

67.1288888454437255859375
dco_code = DIVN * 10 *x le-6 x 2732

67.1288888454437255859375* 10 * le-6 %2732

2883163.822080
PLL_DCO_FRAC

floor (dco_code)

PLL_DCO_FRAC 2883163

Note:

1. twos_comp_to_signed_int (Number, Word length) — Python function use to convert 2’s compliment to
signed integer.

2. floor(number) — Python function used to return the closest integer value which is less than or equal to
given numeric value.

SiT9514x AN20002 Rev. 1.2 Page 7 of 30 www.sitime.com

Application Note T' .
Cascade DCO Configuration m I I I Ie
3 Steps to perform DCO

3.1 DCO increment and decrement using registers

e Calculate PLL_DCO_INT and PLL_DCO_FRAC values as described in section Calculation of DCO fractional
and integer code in sync mode
¢ Configure the device to do DCO from the register map (Set page 0, 0x23 to 0)
¢ Set the direction of PLL_SELO and PLL_SEL1 pins as input (page 0, 0x15) — Only for the SiT95147 variant
¢ Select the PLL to be incremented or decremented with the DCO step:
e Page 0, Ox05 register for SiT95141/SiT95145/SiT95148
e Page 0, 0x05 register or PLL_SELO and PLL_SEL1 pins for SiT95147
¢ Do small trigger update (update the device configuration):
e Write 0 to 0x0f[2] on page O
e Write 1 to 0x0f[2] on page O
e Write 0 to 0x0f[2] on page O
e Write the PLL_DCO_INT and PLL_DCO_FRAC values to the respective registers (PLL page, 0x31 to 0x37)
Enable DCO sync mode/free-run mode as required (PLL page, 0x37/ 0x35):
e Toincrement:
e Write 0 to 0x35[3] on the respective PLL page
e Write 1 to 0x35[3] on the respective PLL page
¢ Note: Add a delay with the minimum pulse width required as described in section Minimum pulse
width, maximum update rate, DCO range and step size.
e Write 0 to 0x35[3] on the respective PLL page
¢ To decrement:
e Trigger DCO update:
e Write 1 to 0x35[2] on the respective PLL page
¢ Note: Add a delay with the minimum pulse width required as described in section Minimum pulse
width, maximum update rate, DCO range and step size.
e Write 0 to 0x35[2] on the respective PLL page

Note:

¢ To perform the DCO increment and decrement operation via register write, FINC (Increment) and FDEC
(Decrement) pins should be driven to logic 0.
e For DCO in free-run, only PLL_DCO_FRAC needs to be calculated and written to the device.

SiT9514x AN20002 Rev. 1.2 Page 8 of 30 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e

3.2 DCO increment and decrement using FINC and FDEC pins

e Calculate PLL_DCO _INT and PLL_DCO_FRAC values as described in section Calculation of DCO fractional
and integer code in sync mode.
¢ Configure the device to do DCO using FINC and FDEC pins (Page 0, 0x23)
¢ Configure the FINC and FDEC pins as input:
¢ Page 0, 0x14 and 0x17 registers for SiT95141/SiT95145/SiT95148 variants
e Page 0, 0x16 and 0x17 registers for SiT95147 variant
e Set the direction of PLL_SELO and PLL_SEL1 pins as input (page 0, 0x15) — Only for SiT95147 variant
¢ Select the PLL to be incremented or decremented with the DCO step:
e Page 0, Ox05 register for SiT95141/SiT95145/SiT95148
e Page 0, 0x05 register or PLL_SELO and PLL_SEL1 pins for SiT95147
¢ Do small trigger update (update the device configuration):
¢ Write 0 to 0x0f[2] on page O
¢ Write 1 to 0x0f[2] on page O
¢ Write 0 to 0x0f[2] on page O
¢ Mask DCO operation of the respective PLL, if that PLL frequency needs to remain unaffected during DCO
increment/decrement operation (PLL page, 0x35)
e Write the PLL_DCO_INT and PLL_DCO_FRAC values to the respective registers (PLL page, 0x31 to 0x37)
¢ Enable DCO sync/free-run mode as required (PLL page, 0x37/ 0x35)
¢ To increment toggle FINC as below:
¢ FINC =0 (logic 0);
¢ FINC =1 (logic 1); Perform DCO increment operation from pin
¢ Note: Add a delay with the minimum pulse width required, as described in section Minimum pulse
width, maximum update rate, DCO range and step size.
¢ FINC =0 (logic 0);
¢ To decrement toggle FDEC as below:
e FDEC =0 (logic 0);
e FDEC =1 (logic 1); Perform DCO increment operation from pin
¢ Note: Add a delay with the minimum pulse width required as described in section Minimum pulse
width, maximum update rate, DCO range and step size.
e FDEC =0 (logic 0);

Note:

¢ To perform the DCO increment and decrement operations via FINC and FDEC pins, PLL page register bits
0x35[3](Increment) and 0x35[2](Decrement) should be 0.
e For DCO in free-run, only PLL_DCO_FRAC needs to be calculated and written to the device.

SiT9514x AN20002 Rev. 1.2 Page 9 of 30 www.sitime.com

Application Note H .
Cascade DCO Configuration I m e

Table 3: Registers required for DCO — SIT95141/SiT95145/SiT95148

Register Bit o
Page number address number Description

If reg23[6] = 0; DCO from register map

0x23 6
If reg23[6] = 1; DCO from pin
If reg14[7] = 0; set direction of FDEC as input

0x14 7
If regl4[7] = 1; set direction of FDEC as output
If regl7[3] = 0; set direction of FINC as input

0x17 3

Page O If regl7[3] = 1; set direction of FINC as output

If reg05(3:2] = 0; DCO_PLLA is selected
If reg05[3:2] = 1; DCO_PLLB is selected

0x05 3:2
If reg05[3:2] = 2; DCO_PLLC is selected
If reg05[3:2] = 3; DCO_PLLD is selected

0oxof 2 Command directive bit to update NVM bank

SiT9514x AN20002 Rev. 1.2 Page 10 of 30 www.sitime.com

Application Note H .
Cascade DCO Configuration I m e

Register Bit

address number Description

Page number

Continuous
0x31 7:0 PLL_DCO_FRAC[7:0]
0x32 7:0 PLL_DCO_FRAC[15:8]
0x33 7:0 PLL_DCO_FRAC[23:16]
0x34 7:0 PLL_DCO_FRAC[31:24]
0x36 7:0 PLL_DCO_INT[9:2]
0x37 7:6 PLL_DCO_INT[1:0]
PLL page 1: DCO sync mode enabled
0x37 5
(Any one of 4 pages A, B, 0: DCO sync mode disable
C,orD)
1: DCO free-run mode enabled
0x35 1
0: DCO free-run mode disable
1: DCO Mask is enable
0x35 0
0: DCO Mask is disable
1: DCO Decrement bit is enable
0x35 2
0: DCO Decrement bit is disable
1: DCO Increment bit is enable
0x35 3

0: DCO Decrement bit is disable

SiT9514x AN20002 Rev. 1.2 Page 11 of 30 www.sitime.com

Application Note M .
Cascade DCO Configuration I m e
Table 4: Registers required for DCO - SiT95147

Register
address

Bit number Description

Page number

If reg23[6] = 0; DCO from register map

0x23 6

If reg23[6] = 1; DCO from pin

If reg16[3] = 0; set direction of FDEC as input
0x16 3

If reg16[3] = 1; set direction of FDEC as output

If regl7[3] = 0; set direction of FINC as input
0x17 3

If regl7[3] = 1; set direction of FINC as output

If reg05[3:2] = 0; DCO_PLLA is selected
Page O If reg05[3:2] = 1; DCO_PLLB is selected

0x05 3:2
If reg05[3:2] = 2; DCO_PLLC is selected
If reg05[3:2] = 3; DCO_PLLD is selected
0 If reg15[7] = 0; it will set direction of PLL_SELO as input
x15 7
If reg15[7] = 1; it will set direction of PLL_SELO as output
ot 3 If reg15[3] = 0; it will set direction of PLL_SEL1 as input
x15
If reg15[3] = 1; it will set direction of PLL_SEL1 as output
0xOf 2 Command directive bit to update NVM bank

SiT9514x AN20002 Rev. 1.2 Page 12 of 30 www.sitime.com

Application Note H .
Cascade DCO Configuration I m e

Register
address

Page number

Bit number Description

Continuous
0x31 7:0 PLL_DCO_FRAC[7:0]
0x32 7:0 PLL_DCO_FRAC[15:8]
0x33 7:0 PLL_DCO_FRAC[23:16]
0x34 7:0 PLL_DCO_FRAC[31:24]
0x36 7:0 PLL_DCO_INT[9:2]
0x37 7:6 PLL_DCO_INT[1:0]
PLL Page 1: DCO sync mode enabled
0x37 5
(Any one of 4 pages A, B, C, 0: DCO sync mode disable
or D)
1: DCO free-run mode enabled
0x35 1
0: DCO free-run mode disable
1: DCO Mask is enable
0x35 0
0: DCO Mask is disable
1: DCO Decrement bit is enable
0x35 2
0: DCO Decrement bit is disable
1: DCO Increment bit is enable
0x35 3

0: DCO Decrement bit is disable

SiT9514x AN20002 Rev. 1.2 Page 13 of 30 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e

4 Minimum pulse width, maximum update rate, DCO range and step size

4.1 DCO in sync mode

For DCO in sync mode, the minimum pulse width and maximum update rate depends on the PLL input clock
frequency (finA, finB, finC, finD):

e Minimum pulse width: (tDCO_PW_MIN) = 2/finA (e.g. finA = 2 MHz,
tDCO_PW_MIN = 2/2 MHz = 1lus)

e Maximum update rate frequency: (fDCO_max) = finA/4 (e.g. finA = 2 MHz,
fDCO_max = 500 kHz)

e Settling time: = 5/ (2xpi*BW)

e DCOrange: +/-500 ppm

e Minimum DCO step size: 5 ppt

Update Settling
Time Time

Fo + del PPM

Fo

Fo -- Initial Frequency
FO + del PPM -- Final Frequency

Figure 1: Output frequency update in sync mode

Note: This pulse width fulfills both pin and register control operation requirements.

4.2 DCO in free-run mode

e Minimum pulse width (tDCO_PW_MIN) = 100 nS

e Maximum update rate frequency (fDCO_max) = 1 MHz
Settling time = 5 / (2*pi*500 Khz) = 1.59 uS

DCO Range : +/-500 ppm

e Minimum DCO step size: 5 ppt

Update Settling
Time Time

Fo + del PFM

-t -
- o

Fo B —/

Fo -- Initial Frequency
FO + del PPM -- Final Frequency

Figure 2: Output frequency update in free-run mode

Note: This pulse width fulfills both pin and register control operation requirements.

SiT9514x AN20002 Rev. 1.2 Page 14 of 30 www.sitime.com

Application Note . .
Cascade DCO Configuration m TI I I Ie
5 DCO output readback procedure

5.1 Free-run mode

The following steps can be used to readback the DCO debug registers and to confirm the DCO operation has
been done in free-run mode.

Step 1: Readback the integer and fractional parts of DIVN before DCO operation by performing the DCO free-
run debug readback sequence to get the Pre_dco_divn_int and Pre_dco_divn_frac values.

Step 2: Carry out the desired DCO increment/decrement operation.

Step 3: Readback the integer and fractional parts of DIVN after DCO operation by performing the ‘DCO free-run
debug readback sequence’ to get the Post_dco_divn_int and Post_dco_divn_frac values.

Step 4: Compare the DIVN values before and after DCO operation using the equation:

e Post_dco_divn_int +Post_dco_divn_frac = Pre_dco_divn_int + Pre_dco_divn_frac
+/- PLL_DCO_FRAC (consider + for increment operation, — for decrement operation).
¢ RHS should be equal to LHS if a DCO operation has been performed.

Note: For PLL_DCO_FRAC, refer to section Calculation of DCO fractional code in free-run.

5.1.1 DCO free-run debug readback sequence

* Program debug select address to read the Pre_dco_divn_int
® j2c.i2cw(0x69,0xff,0x0x0a) — Select PLL-A (page number can change as per the PLL selection)
e i2c.i2cw(0x69,0xb3,0x1b)
¢ Read the debug data (dco_divn_int)
e dco_divn_int [7:0] = i2c.i2cr(0x69,0xb9)
e dco_divn_int [15:8] = 1i2c.i2cr(0x69,0xba)
e dco_divn_int [23:16] = i2c.i2cr(0x69,0xbb)
e dco_divn_int [31:24] = di2c.i2cr(0x69,0xbc)

SiT9514x AN20002 Rev. 1.2 Page 15 of 30 www.sitime.com

Application Note H .
Cascade DCO Configuration I m e

Table 5: Readback registers comparison with DIVN_INT_COMPARE

Readback register BIT range DIVN_INT Comment
0xB9 0:6 0x17[0:6]
O0xBA 7 0x18[4]
O0xBA 9:15 MSB 24-bits are zero.
0xBB 16:23
0XBC 24:31

Note that readback registers value can be different from DIVN_INT.

Readback register values are used for calculating the current value of DIVN_INT after the DCO update.

e Program debug select address to read the dco_divn_frac:
e T2c.i2cw(0x69,0xb3,0x1c)

¢ Read the debug data (dco_divn_frac):
e dco_divn_frac [7:0] = i2c.i2cr(0x69,0xb9)
e dco_divn_frac [15:8] = 1i2c.i2cr(0x69,0xba)
e dco_divn_frac [23:16] i2c.i2cr (0x69,0xbb)
e dco_divn_frac [31:24] i2c.i2cr (0x69,0xbc)

SiT9514x AN20002 Rev. 1.2 Page 16 of 30 www.sitime.com

Application Note H .
Cascade DCO Configuration I m e

Table 6: Read back registers comparison with DIVN_FRAC_COMPARE

Readback register BIT range DIVN_FRAC Comment
0xB9 0:7 8d'0
OxBA 8:15 Ox1a[8:15]
LSB 8 bits are zero in the DIVN_FRAC registers.
0xBB 16:23 0x1b[16:23]
0XBC 24:31 0x1c[24:31]

Note: If the SPI interface is used for debug read operation, Spi_clock_frequency should be less than or
equal to xo_frequency/10.

Note that readback register values can be different from DIVN_FRAC.
Readback register values are used for calculating the current value of DIVN_INT after DCO update.
DIVN calculation

The DIVN value can be calculated by obtaining the values of PLL_DIVN_INT (Integer part),
PLL_DIVN_FRAC_SIGNED (fractional part — numerator) from the register mentioned in Table 2.

DIVN = PLL_DIVN_IN + PLL_DIVN_FRAC_SIGNED/2/32 refer to this value (from .nvm file)
Note:

1. PLL_DIVN_INT: 9-bit
2. PLL_DIVN_FRAC: Signed 32-bit (two's complement, LSB 8 bits are 0)

SiT9514x AN20002 Rev. 1.2 Page 17 of 30 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e

5.2 Sync mode

The following steps can be used to readback the DCO debug registers and confirm DCO operation has been
done in sync mode.

Step 1: Readback the integer and fractional parts of DIVN2 before DCO operation by performing the ‘DCO sync
mode debug readback sequence’ to get Pre_dco_divn2_int, Pre_dco_divn2_frac_numand
Pre_dco_divn2_frac_den values.

Step 2: Carry out the desired DCO increment/decrement operation.

Step 3: Readback the integer and fractional parts of DIVN2 after DCO operation by performing the ‘DCO sync
mode debug readback sequence’ to get Post_dco_divn2_int_dsmand Post_dco_divn2_frac_num_dsm
and Post_dco_divn2_frac_den_dsm values.

Step 4: Compare the DIVN2 values before and after DCO operation using the equation:
Pre_dco_divn2_frac_den_dsmxPost_dco_divn2_int_dsm+Post_dco_divn2_frac_num_dsm=Pre_d
co_divn2_frac_den_dsmxPre_dco_divn2_int_dsm+Pre_dco_divn2_frac_num_dsm +/-

(Pre_dco_divn2_frac_den_dsmxPLL_DCO_INT + PLL_DCO_FRAC) (consider + for increment operation
or consider — for decrement operation)

RHS should be equal to LHS if DCO operation has been performed

Note: For PLL_DCO_FRAC and PLL_DCO_INT, refer to section Calculation of DCO fractional and integer code in
sync mode.

5.2.1 DCO sync mode debug readback sequence

e Program debug select address to read the dco_divn2_int_dsm:
e I2c.i2cw(0x69,0xff,0x0x0a) # select PLL-A (page number can change as per the PLL selection)
e I2c.i2cw(0x69,0xb3,0x12)
e Read the debug data (Pre_dco_divn2_int_dsm):
e dco_divn2_int_dsm[7:0] = i2c.i2cr(0x69,0xb9)
e dco_divn2_int_dsm[15:8] = 1i2c.i2cr(0x69,0xba)
e dco_divn2_int_dsm[23:16] = i2c.i2cr(0x69,0xbb)
e dco_divn2_int_dsm[31:24] = 1i2c.i2cr(0x69,0xbc)

SiT9514x AN20002 Rev. 1.2 Page 18 of 30 www.sitime.com

Application Note H .
Cascade DCO Configuration I m e

Table 7: Readback registers comparison with DIVN2 INT COMPARE

Readback register BIT range DIVN2_INT Comment
0xB9 0:7 0x1d[0:7]
OxBA 8:15 Ox1e[8:15]
11 MSB's will be zero
0xBB 16:23 0x1f[16:20]
0XBC 24:31

Note that readback registers value can be different from DIVN2_INT, Table 7 can be used for calculating the
current value of DIVN2_INT after readback.

e Program debug select address to read the dco_divn2_frac_num_dsm:
e T2c.i2cw(0x69,0xb3,0x13)

¢ Read the debug data (dco_divn2_frac_num_dsm):
e dco_divn2_frac_num_dsm[7:0] = 1i2c.i2cr(0x69,0xb9)
e dco_divn2_ frac_num _dsm[15:8] = i2c.i2cr(0x69,0xba)
e dco_divn2_ frac_num _dsm[23:16] i2c.i2cr (0x69,0xbb)
e dco_divn2_ frac_num _dsm[31:24] i2c.i2cr (0x69,0xbc)

SiT9514x AN20002 Rev. 1.2 Page 19 of 30 www.sitime.com

Application Note H .
Cascade DCO Configuration I m e

Table 8: Readback registers comparison with DIVN2_FRAC_NUM_COMPARE

Readback register BIT range DIVN2_FRAC_NUM
0xB9 0:7 0x20[0:7]
OxBA 8:15 0x21[8:15]
0xBB 16:23 0x22[16:23]
0XBC 24:31 0x23[24:31]

Note that readback registers value can be different from DIVN2_FRAC_NUM.

Readback register values are used for calculating the current value of DIVN2_FRAC_NUM after DCO update.

e Program debug select address to read the Pre_dco_divn2_frac_den_dsm:
e T2c.i2cw(0x69,0xb3,0x14)
¢ Read the debug data (Pre_dco_divn2_frac_den_dsm):
e dco_divn2_frac_den_dsm[7:0] = 1i2c.i2cr(0x69,0xb9)
e dco_divn2_ frac_ den _dsm[15:8] = 1i2c.i2cr(0x69,0xba)
e dco_divn2_ frac_ den _dsm[23:16] i2c.i2cr (0x69,0xbb)
e dco_divn2_ frac_ den _dsm[31:24] i2c.i2cr (0x69,0xbc)

SiT9514x AN20002 Rev. 1.2 Page 20 of 30 www.sitime.com

Application Note H .
Cascade DCO Configuration I m e

Table 9: Readback registers compare with DIVN2_FRAC_DEN_COMPARE

Readback register BIT range DIVN2_FRAC_DEN
0xB9 0:7 0x24[0:7]
OxBA 8:15 0x25[8:15]
0xBB 16:23 0x26[16:23]
0XBC 24:31 0x27[24:31]

Note that readback registers can be different from DIVN2_FRAC_DEN.
Readback register values are used for calculating the current value of DIVN2_FRAC_NUM after DCO update.
Note:

¢ If SPlinterface is used for debug read operations, Spi_clock_frequency should be less than or equal
to fin_frequency/10.

DIVN2 readback calculation

The DIVN2 can be calculated by obtaining the values of PLL_DIVN2_INT(Integer part), PLL_DIVN2_FRACNUM(f
ractional part — numerator) and PLL_DIVN2_FRACDEN (fractional part — denominator) from the register
mentioned in the table PLL DIVN2 divider configuration.

DIVN2 = PLL_DIVN2_INT + PLL_DIVN2_FRACNUM / PLL_DIVN2_FRACDEN
Note:
e PLL_DIVN2_INT: 21-bitinteger

e PLL_DIVN2_FRACNUM: Signed 32-bit (two's complement)
e PLL_DIVN2_FRACDEN: Unsigned 32-bit

SiT9514x AN20002 Rev. 1.2 Page 21 of 30 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e
6 Example code

6.1 DCO through register map (SiT9514x, sync mode profile)

Do a 10 ppm increment and decrement on PLL-A using the register map:
Step 1: DCO code calculation
Obtain the PLL_DIVN2_INT, PLL_DIVN2_FRACNUM_SIGNED, PLL_DIVN2_FRACDEN (from .nvm file):
DIVN2 = PLL_DIVN2_INT + (PLL_DIVN2_FRACNUM_SIGNED / PLL_DIVN2_FRACDEN
= (860 + 343597380/2147483625)
dco_code = DIVN2 * PPM Step Size *le-6

(860 + 343597380/2147483625) * 10 * le-6

0.0086016
PLL_DCO_INT = floor (dco_code+0.5) = 0
PLL_DCO_FRAC = floor ((dco_code - PLL_DCO_INT) % PLL_DIVN2_FRACDEN)

floor ((0.0086016- 0) * 2147483625)

18471795

Step 2: Device configuration
i2c.i2cw(0x69,0xff,0x00) # Go to generic page
j2c.i2crmw(0x69,0x23,6,1,0) # Configure the device to do DCO through register map
j2c.i2crmw(0x69,0x05,3,2,0) # Select PLL-A for DCO
j2c.i2crmw(0x69,0x0f,2,1,0) # Small trigger update
i2c.i2crmw(0x69,0x0f,2,1,1)
i2c.i2crmw(0x69,0x0f,2,1,0)

i2c.i2cw(0x69,0xff,0x0A) # Go to the PLL-A page
i2c.i2cw(0x69,0x31,0x73) # Update PLL_DCO_FRAC[7:0]
i2c.i2cw(0x69,0x32,0xdb) # Update PLL_DCO_FRAC[8:15]
i2c.i2cw(0x69,0x33,0x19) # Update PLL_DCO_FRAC[16:24]
i2c.i2cw(0x69,0x34,0x1) # Update PLL_DCO_FRAC[25:32]
i2c.i2cw(0x69,0x36,0x0) # Update PLL_DCO_INT[9:2]

i2c.i2crmw(0x69,0x37,7,2,0) # Update PLL_DCO_INT[1:0]
i2c.i2crmw(0x69,0x37,5,1,1) # Enable DCO for sync mode — Set the bit 0x37[5] on PLL page

SiT9514x AN20002 Rev. 1.2 Page 22 of 30 www.sitime.com

Application Note H o
Cascade DCO Configuration I m e

Step 3: DCO increment and decrement
DCO increment operation
I2c.i2cw(0x69,0x35,0x00)
I2c.i2cw(0x69,0x35,0x08) # DCO Increment operation

Add a delay with the minimum pulse width required as described in section Minimum pulse width,
maximum update rate, DCO range and step size.

I2c.i2cw(0x69,0x35,0x00)

DCO decrement operation

I2c.i2cw(0x69,0x35,0x00)

I2c.i2cw(0x69,0x35,0x04) # DCO decrement operation

Add a delay with the minimum pulse width required as described in section Minimum pulse width,
maximum update rate, DCO range and step size.

I2c.i2cw(0x69,0x35,0x00)
Note:

* j2c.i2cw (device address, register address, data) — Python function used to write data to a register

e j2c.i2crmw (dev_addrreg_addrbit_loc,no_of bits,hex_data) - Python function used to do a Read-
Modify-Write in register

e See section Calculation of DCO fractional and integer code in sync mode for delay calculation.

6.2 DCO through pins (SiT9514x, sync mode profile)

Do a 10 ppm increment and decrement on PLL-A using the pin:
Step 1: DCO code calculation
Obtain the PLL_DIVN2_INT, PLL_DIVN2_FRACNUM_SIGNED, PLL_DIVN2_FRACDEN (from .nvm file):
DIVN2 = PLL_DIVN2_INT + (PLL_DIVN2_FRACNUM_SIGNED / PLL_DIVN2_FRACDEN
= (860 + 343597380/2147483625)
dco_code = DIVN2 * PPM Step Size *le-6

(860 + 343597380/2147483625) * 10 * le-6
0.0086016

PLL_DCO_INT = floor (dco_code+0.5) = 0
PLL_DCO_FRAC = floor ((dco_code - PLL_DCO_INT) * PLL_DIVN2_FRACDEN)
= floor ((0.0086016- 0) * 2147483625)
= 18471795
Step 2: Device configuration
i2c.i2cw(0x69,0xff,0x00) # Go to generic page
i2c.i2crmw(0x69,0x23,6,1,1) # Configure the device to do DCO through pin

SiT9514x AN20002 Rev. 1.2 Page 23 of 30 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e

j2c.i2crmw(0x69,0x05,3,2,0) # Select PLL-A for DCO
i2c.i2crmw(0x69,0x14,7,1,0) # Set FDEC pin as input — Set bit 0x14[7] on generic page to 0
j2c.i2crmw(0x69,0x17,3,1,0) # Set FINC pin as input — Set bit 0x17[3] on generic page to 0
j2c.i2crmw(0x69,0x0f,2,1,0) # Small trigger update

j2c.i2crmw(0x69,0x0f,2,1,1)
i2c.i2crmw(0x69,0x0f,2,1,0)

i2c.i2cw(0x69,0xff,0x0A) # Go to the PLL-A page

i2c.i2cw(0x69,0x31,0x73) # Update PLL_DCO_FRAC [7:0]
i2c.i2cw(0x69,0x32,0xdb) # Update PLL_DCO_FRAC[8:15]
i2c.i2cw(0x69,0x33,0x19) # Update PLL_DCO_FRAC[16:24]
i2c.i2cw(0x69,0x34,0x1) # Update PLL_DCO_FRAC[25:32]
i2c.i2cw(0x69,0x36,0x0) # Update PLL_DCO_INT[9:2]
j2c.i2crmw(0x69,0x37,7,2,0) # Update PLL_DCO_INT[1:0]
j2c.i2crmw(0x69,0x37,5,1,1) # Enable DCO for sync mode — Set the bit 0x37[5] on PLL page

Step 3: DCO increment and decrement
e For DCO INCR, Toggle FINC pin in the following sequence:
FINC =0 (logic 0)
FINC =1 (logic 1) # Perform DCO increment operation from pin

Add a delay with the minimum pulse width required as described in section Minimum pulse width,
maximum update rate, DCO range and step size.

FINC =0 (logic 0)
e For DCO DECR, Toggle FDEC pin in the following sequence:
FDEC =0 (logic 0)
FDEC =1 (logic 1) # Perform DCO decrement operation from pin

Add a delay with the minimum pulse width required, as described in section Minimum pulse width,
maximum update rate, DCO range and step size.

FDEC =0 (logic 0)
Note:

® j2c.i2cw(device address, register address, data)-Python function used to write datato a
register

® j2c.i2crmw(dev_addr,reg_addr,bit_loc,no_of_bits,hex_data) - Python function used to do
a Read-Modify-Write in register

SiT9514x AN20002 Rev. 1.2 Page 24 of 30 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e

6.3 DCO through register map (SiT9514x, free-run mode profile)

Do a 10 ppm increment and decrement on PLL-A using the register map:
Step 1: DCO code calculation
Obtain the DIVN = PLL_DIVN_INT + PLL_DIVN_FRAC_SIGNED/2732 from the nvm file

67+553573376/2"32

67.1288888454437255859375
dco_code = DIVN *x 10 *x le-6 *x 2732
67.1288888454437255859375% 10 * le-6 *2/732

2883163.822080
PLL_DCO_FRAC = floor (dco_code)
PLL_DCO_FRAC = 2883163

Step 2: Device configuration
i2c.i2cw(0x69,0xff,0x00) # Go to generic page
i2c.i2crmw(0x69,0x23,6,1,0) # Configure the device to do DCO through register map
j2c.i2crmw(0x69,0x05,3,2,0) # Select PLL-A for DCO
i2c.i2crmw(0x69,0x0f,2,1,0) # Small trigger update
j2c.i2crmw(0x69,0x0f,2,1,1)
j2c.i2crmw(0x69,0x0f,2,1,0)

i2c.i2cw(0x69,0xff,0x0A) # Go to the PLL-A page
i2c.i2cw(0x69,0%x31,0x5b) # Update PLL_DCO_FRAC[7:0]
i2c.i2cw(0x69,0%x32,0xfe) # Update PLL_DCO_FRAC[8:15]
i2c.i2cw(0x69,0x33,0x2b) # Update PLL_DCO_FRAC[16:24]
i2c.i2cw(0x69,0x34,0x00) # Update PLL_DCO_FRAC[25:32]

i2c.i2crmw(0x69,0x35,1,1,1) # Enable DCO for free-run mode — Set the bit 0x35[1] on PLL page
Step 3: DCO increment and decrement

DCO increment operation

I2c.i2crmw(0x69,0x35,3,1,0)

I2c.i2crmw(0x69,0x35,3,1,1) # DCO increment operation

Add a delay with the minimum pulse width required as described in section Minimum pulse width,
maximum update rate, DCO range and step size.

I2c.i2crmw(0x69,0x35,3,1,0)
DCO decrement operation

I2c.i2crmw(0x69,0x35,2,1,0)

SiT9514x AN20002 Rev. 1.2 Page 25 of 30 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e

I2c.i2crmw(0x69,0x35,2,1,1) # DCO decrement operation

Add a delay with the minimum pulse width required as as described in section Minimum pulse width,
maximum update rate, DCO range and step size.

I2c.i2crmw(0x69,0x35,2,1,0)

Note:

® j2c.i2cw(device address, register address, data)-Python function used to write data to a
register

® j2c.i2crmw (dev_addr,reg_addr,bit_loc,no_of_bits,hex_data) - Python function used to do
a read-modify-write in register

¢ Refer to the delay calculation instructions, as described in section Minimum pulse width, maximum
update rate, DCO range and step size.

6.4 DCO through pins (SiT9514x, free-run mode profile)

Do a 10 ppm increment and decrement on PLL-A using the pin:
Step 1: DCO code calculation
Obtain the DIVN = PLL_DIVN_INT + PLL_DIVN_FRAC_SIGNED/2732 from the nvm file

67+553573376/2"32

67.1288888454437255859375
dco_code = DIVN *x 10 *x le-6 *x 2732
67.1288888454437255859375% 10 * le-6 %2732

2883163.822080

PLL_DCO_FRAC floor (dco_code)

PLL_DCO_FRAC 2883163

Step 2: Device configuration

i2c.i2cw(0x69,0xff,0x00) # Go to generic page

i2c.i2crmw(0x69,0x23,6,1,1) # Configure the device to do DCO through pin
j2c.i2crmw(0x69,0x05,3,2,0) # Select PLL-A for DCO

i2c.i2crmw(0x69,0x14,7,1,0) # Set FDEC pin as input — Set bit 0x14[7] on generic page to 0
i2c.i2crmw(0x69,0x17,3,1,0) # Set FINC pin as input — Set bit 0x17[3] on generic page to 0
i2c.i2crmw(0x69,0x0f,2,1,0) # Small trigger update

j2c.i2crmw(0x69,0x0f,2,1,1)
j2c.i2crmw(0x69,0x0f,2,1,0)

i2c.i2cw(0x69,0xff,0x0A) # Go to the PLL-A page
i2c.i2cw(0x69,0x31,0x5b) # Update PLL_DCO_FRAC[7:0]
i2c.i2cw(0x69,0x32,0xfe) # Update PLL_DCO_FRAC[8:15]

SiT9514x AN20002 Rev. 1.2 Page 26 of 30 www.sitime.com

Application Note H o
Cascade DCO Configuration I m e

i2c.i2cw(0x69,0x33,0x2b) # Update PLL_DCO_FRAC[16:24]
i2c.i2cw(0x69,0x34,0x00) # Update PLL_DCO_FRAC[25:32]
j2c.i2crmw(0x69,0x35,1,1,1) # Enable DCO for free-run mode — Set the bit 0x35[1] on PLL
page

Step 3: DCO increment and decrement
For DCO INCR, Toggle FINC pin in the following sequence:
FINC =0 (logic 0)
FINC =1 (logic 1); # Perform DCO increment operation from pin

Add a delay with the minimum pulse width required as described in section Minimum pulse width,
maximum update rate, DCO range and step size.

FINC =0 (logic 0)
For DCO DECR, Toggle FDEC pin in the following sequence:
FDEC =0 (logic 0)
FDEC =1 (logic 1); # Perform DCO decrement operation from pin

Add a delay with the minimum pulse width required as described in section Minimum pulse width,
maximum update rate, DCO range and step size.

FDEC =0 (logic 0)
Note:

¢ j2c.i2cw(device address, register address, data)-Python function used to write data to a
register

e j2c.i2crmw(dev_addr, reg_addr,bit_loc,no_of_bits,hex_data)—Python function used to do
a read-modify-write in register

SiT9514x AN20002 Rev. 1.2 Page 27 of 30 www.sitime.com

Application Note - m o
Cascade DCO Configuration I e

7 Annexure
Python functions:
¢ Function used to convert two's complement to signed integer:

def twos_comp_to_signed_int (DIVN_FRAC, WL_frac) # Convert from two's complement to
signed integer for negative numbers

if (DIVN_FRAC >= 0.5*xpow (2, WL_frac)): # Negative fraction
divn_fraction = -(pow (2, WL_frac) - DIVN_FRAC)

elif (DIVN_FRAC < 0.5%pow (2, WL_frac)): # Positive fraction
divn_fraction = DIVN_FRAC

return(divn_fraction)

¢ Function used to return the closest integer value which is less than or equal to given numeric value:
math. floor (number) #python math library should be imported to include this function

SiT9514x AN20002 Rev. 1.2 Page 28 of 30 www.sitime.com

Application Note
Cascade DCO Configuration

8 Revision history

Table 10: Revision history of this document

HiTime

Revision Date Description
1.0 07 Jul 2021 Initial release
1.1 20 Jan 2022 Minor layout changes only, no technical content was changed.

SiT9514x AN20002 Rev. 1.2

Page 29 of 30 www.sitime.com

Application Note H o
Cascade DCO Configuration I m e

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation, February 2022 . The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any
loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse
including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being
tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical,
thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in
fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty
arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product
and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in
other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR
USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of
SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans
supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation,
compilation, or representation of this material shall be strictly prohibited.

SiT9514x AN20002 Rev. 1.2 Page 30 of 30 www.sitime.com

	SiT9514x DCO configuration
	General description
	Key features
	Introduction
	Applicability

	DCO code calculation for predefined frequency change
	Calculation of DCO fractional and integer code in sync mode
	Calculation of DCO fractional code in free-run mode

	Steps to perform DCO
	DCO increment and decrement using registers
	DCO increment and decrement using FINC and FDEC pins

	Minimum pulse width, maximum update rate, DCO range and step size
	DCO in sync mode
	DCO in free-run mode

	DCO output readback procedure
	Free-run mode
	DCO free-run debug readback sequence

	Sync mode
	DCO sync mode debug readback sequence

	Example code
	DCO through register map (SiT9514x, sync mode profile)
	DCO through pins (SiT9514x, sync mode profile)
	DCO through register map (SiT9514x, free-run mode profile)
	DCO through pins (SiT9514x, free-run mode profile)

	Annexure
	Revision history

