

Description

The SiT92318 family of parts are HCSL Low-Power (HCSL-LP), 8 output differential Fan-Out buffers that meet or exceed all the performance requirements of the Intel DB800Z specification. They are suitable for PCI Express Gen.1–6 or QPI/UPI applications.

The SMBus interface and multiple output-enable pins allow the configuration and control of all 8 outputs individually.

It is packaged in a compact VQFN package and uses a standard pin configuration.

Applications

- Micro server and Tower Server
- Rack server
- Storage area network and host bus adapter card
- Network attached storage
- Hardware accelerator

Features

- HCSL-LP outputs with Zo = 85 Ω
- Saves power and board space no termination resistors required
- Supports PCIe and QPI applications
- Spread spectrum compatible; tracks spreading input clock for low EMI
- Additive phase jitter
- Fclk=100 MHz (10k-20M) band ~ 50fs (typical)
- Fclk=100 MHz after PCIE Gen5 (CC) filter ~12 fs RMS
- Fclk=100 MHz after PCIE Gen6 filter ~8 fs RMS
- Additive phase jitter after DB800Z filter ~10 fs RMS (typical)
- Programmable output slew rate control
- 3.3 V core and IO supply voltages
- Hardware-controlled low power mode (PDN)
- Current consumption: 62 mA Typical with all 8 outputs enabled at 100 MHz, driving a 10 inch T line and 2 pF load on each output

Figure 1. SiT92318 Functional Overview

Table of Contents

Description	1
Applications	1
Features	1
Ordering Information	3
Electrical Characteristics	4
Functional Description	9
Typical Application	9
Parameter Measurement Information	9
Power Good Assertion and De-assertion	11
Power Good De-Assertion	11
Power Good Assertion	11
SMBus Parameters	13
Register Address	14
Package Dimensions and Patterns	15

Ordering Information

Notes:

1. X = "A" and "B" customer device, "C" to "Z" reserved.

a.

A:Denotes blank devices; B: Denotes Pre-configured devices, contact SiTime for the specifics b.

2. Y = 0..9, A...Z for custom serial ID.

Electrical Characteristics

Table 1. Absolute Maximum Ratings

Parameter	Conditions	Symbol	ymbol Min Typ		Max	Units
Supply Voltage	Input Supply Core Supply	VDDIN VDD 3.63				V
Output Bank Supply Voltage	Output Driver Supply	VDDO		3.63	V	
Input Low Voltage		VIL	GND-0.5			V
Input High Voltage	Except for SMBus interface	VIH		VDD+0		V
Input High Voltage	SMBus clock and data pins	VIHSMB	нѕмв 3.6		3.6	V
Storage Temperature		Ts	-65		150	°C
Junction Temperature		Tj			125	°C
ESD (Human Body Model)	JESD22A-114	ESDHBM			2000	V
ESD(Charge Device Model)		ESDCDM	DCDM 500		500	V
Latch Up	JEDEC JESD78D	LU	100		100	mA
Moisture Sensitivity Level		MSL		3		

Notes:

1. Exceeding maximum ratings may shorten the useful life of the device.

Exceeding maximum ratings may shorten the user the order of the device.
 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or at any other conditions beyond those indicated under the DC Electrical Characteristics is not implied. Exposure to Absolute-Maximum-Rated conditions for extended periods may affect device reliability or cause permanent device damage.

Table 2. Recommended Operating Supply and Temperature

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Input Supply Voltage		VDDIN	2.97	3.3	3.465	V
Core Supply Voltage		VDD	2.97	3.3	3.465	V
Output Supply Voltage		VDDO	2.97	3.3	3.465	V
Ambient Temperature		T _A	-40		85	°C
Junction Temperature		Tj			125	°C

Table 3. Electrical Characteristics

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Onereting Supply Current	Input Supply Current	IDD _{VDDIN}		6.6		mA
Operating Supply Current	Core Supply Current	IDD _{VDD}		8		mA
Additive Output Supply Current	All Outputs Enabled, driving a 10in T-line terminated with 2 pF cap at 100 MHz clock	IDD _{VDDO}		48		mA
				1		mA
Power Down Current	CKPWRGD = 0	IDD _{VDD}		4.5		mA
		IDD _{VDDO}		5.3		mA
		IDD _{VDDIN1}		0.1		mA
Power Down Current,	CKPWRGD = 0, with SMBUS control	IDD _{VDD1}		3		mA
		IDD _{VDD01}		0.1		mA
	Input	Control Pin Char	acteristics			
Input High Current	VDDIN = 3.3 V, VIH = VDDIN	Ін			20	μA
Input Low Current		lı∟	-0.5			μA
Input high voltage – Logic inputs		VIH	0.7xVDDIN			V
Input low voltage – Logic inputs		VIL			0.3xVDDIN	V
Internal Pull-down resistance		RPulldown		200		ΚΩ
Pin Inductance		L _{PIN}			7	nH
Capacitance	Logic Inputs, except DIF_IN.	C _{IN}			4.5	
	DIF_IN differential clock inputs ^[2]	CINDIF_IN			2.7	pF
	Output pin capacitance	COUT			4.5	

Notes:

1. All parameters are guaranteed by design and characterization, not tested in production.

2. DIF_IN input.

Table 4. Input Clock Characteristics

Unless otherwise specified: VDDIN = 3.3 V ± 5%, VDDO = 3.3 V ± 5%, -40 °C ≤ TA ≤ 85 °C, CLKin driven differentially.

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Input frequency range		FCLKin	1		400M	Hz
Peak differential input voltage swing		VID	0.1			V
Input Slew Rate - CLK _{IN}	Measured differentially	dv/dt	0.2		4	V/ns
Input Leakage Current	VIN = VDD, VIN = GND	lin	-5		5	uA
Input Duty Cycle	Measurement from differential waveform	d _{TIN}		50		%
Input Crossover Voltage	Crossover voltage		0.1		0.9	V

Table 5. Output Clock Characteristics (HCSL-LP) at 100 MHz

 T_{A} = $T_{\text{COM}};$ Supply Voltage VDDO = 3.3 V +/-5%

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Slew rate	Scope averaging on	Trf	2		4	V/ns
Slew rate matching	Slew rate matching, Scope averaging on	ΔT _{rf}			20	%
Voltage High	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	V_{High}		750		mV
Voltage Low		V _{Low}		0		mV
Max Voltage	Measurement on single ended	V _{max}				
Min Voltage	signal using absolute value. (Scope averaging off)	V _{min}				mV
Vswing	Scope averaging off	V _{SWING}				mV
Crossing Voltage (abs)	Scope averaging off	V _{cross_abs}		375		mV
Crossing Voltage (var)	Scope averaging off	∆-Vcross				mV
Differential Impedance		ZDIFF		85		Ω
Clock Stabilization ^[1,2]	From VDDO power-up and after input clock stabilization or de-assertion of PDb to 1 st Clock	T _{STAB}		1.0	1.8	ms
OEb Latency ^[1,2,3]	DIF starts after OEb assertion DIF stop after OEb de-assertion	t latoeb	2		3	Clocks
Tdrive_PDb ^[1,3]	DIF output enable after PDb de-assertion	t _{DRVPDb}		76	300	μs
T _{FALL} ^[2]	Fall time of control inputs	t⊧			5	ns
T _{RISE} ^[2]	Rise time of control inputs	t _R			5	ns
Output high voltage	Single ended, measured into DC test load	V _{OH}	225		270	mV
Output low voltage	Single ended, measured into DC test load	V _{OL}	10		120	mV
Over shoot voltage	Single ended, measured into DC test load	Vovs			V _{0Н} +75	mV
Under shoot voltage	Single ended, measured into DC test load	V _{UDS}			V _{OL} -75	mV
Differential Impedance ^[4]		ZDIFF	85-5%	85	85+5%	Ω
Differential Impedance (crossing) ^[5]		ZDIFF_CROSS	85-20%	85	85+20%	Ω

Notes:

Guaranteed by design and characterization, not 100% tested in production. Control input must be monotonic from 20% to 80% of input swing. 1.

2.

Time from deassertion until outputs are > 200mV. 3.

4. Measured at $V_{\text{OH}}/V_{\text{OL}}$

5. Measured at transition.

Table 6. SMbus Electrical Parameters

 $T_A = T_{AMB}$. Supply voltages are per normal conditions. See Test loads for loading conditions.

Parameter	Conditions	Symbol	Min	Тур	Max	Units
SMBus Input Low Voltage		VILSMB			0.8	V
SMBus Input High Voltage		VIHSMB	2.1		VDD _{SMB}	V
SMBus Output Low Voltage	At IPULLUP	VOLSMB			0.4	V
SMBus Sink Current	At V _{OL}	I _{PULLUP}	4			mA
Nominal Bus Voltage		VDD _{SMB}	2.7		3.6	V

Table 7. Skew and Differential Jitter Parameters

Parameter	Conditions	Symbol	Min	Тур	Max	Units
CLK INx, CLKOUTx[1,2,4,5,6,7]	Input-to-Output Skew in nominal value @ 25°C, 3.3 V	tpd		0.75		ns
CLKINx, CLKOUTx [1,2,6,7,8]	Input-to-Output Skew Variation across temperature					ps
DIF[2,5,6,7]	Output-to-Output Skew across all outputs	tskew_all			50	ps
Duty Cycle Distortion[3,5,6]	Measured differentially, @100MHz	tDCD				%

Notes:

1. Guaranteed by design and characterization, not 100% tested in production.

2. Differential cross-point to differential cross-point measurement.

3. The difference in Duty Cycle between the output and input clock is referred as Duty Cycle Distortion

4. Mean Value measured through scope averaging.

5. Measured from differential waveform.

6. Measured into fixed 2pF load cap. Input to output skew is measured at the first output edge following the corresponding input.

7. All input-to-output specs refer to the timing between an input edge and the specific output edge created by it.

8. This is the amount of input-to-output delay variation with respect to temperature.

Table 8. Phase Jitter Parameters-PCle Common Clocked (CC) Architecture

Parameters	Conditions	Symbol	Min	Тур	Max	Units
	PCIe Gen 1 HF ^[1,2,3,4]	tjph _{PCleG1} -CC		0.100		ps (p-p)
	PCIe Gen 2 HF [1,2,3,4]	tjph _{PCleG2-CC}		0.080		ps rms
Additive Phase litter	PCIe Gen 3 ^[1,2,4]	tjph _{PCleG3-CC}		0.023		ps rms
Additive Flidse Sitter	PCIe Gen4 ^[1,2,4]	tjph _{PCleG4-CC}		0.023		ps rms
	PCIe Gen5 ^[1,2,4]	tjph _{PCleG5} -cc		0.009		ps rms
	PCle Gen6 ^[1,2,4]	tjph _{PCleG6-CC}		0.006		ps rms

Notes:

3. Additive RMS Jitter Measurement for PCIe are made using DSO. Commercially available and popular PCIe jitter post processing tools are used to report PCIe jitter

4. Additive jitter for RMS values is calculated by solving the equation for b [$b = \sqrt{(c^2 - a^2)}$] where 'a' is the rms input jitter and "c" is the rms total jitter.

Input to SIT92318 is fed using low phase noise source SMA100B, SIT92318 is configured as 100MHz HCSL Output Driver [VDDOx = 3.3 V] and fed to the channels of DSA90804A using the exact measurement set up.

^{1.} Guaranteed by design and characterization. Applies to all differential outputs.

^{2.} Input to SiT92318 is fed using low phase noise source SMA100B while SiT92318 is configured as 100 MHz LP-HCSL Output Driver and fed to the channels of the DSO through low noise high slew drivers to minimize the impact of DSO broadband noise.

Figure 2. Pin Configuration

Table 9. Pin Description

Pin Name	Pin No.	I/O Type	Description
CKPWRGD_PDN	1	I	3.3 V Input notifies device to sample latched inputs and start up on first high assertion or exit Power Down Mode on subsequent assertions. Low enters Power Down Mode.
GNDIN	2	Ground	Differential Input clock (receiver) GND
VDDIN	3	PWR	3.3 V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
CLKINP	4	I	0.75 V Differential True input
CLKINN	5	I	0.75 V Differential Complementary Input
SADR0	-	I, PD*	SMBUS address strap pin. There is a 3 level input decoding on this pad
SMBDAT	6	I/O	Data pin of SMBUS circuitry, 3.3 V tolerant
SMBCLK	7	I	Clock pin of SMBUS circuitry, 3.3 V tolerant
NC/Hi/M/Lo	48	N/A	This pin does not have any specific user function. NC or any static level will be acceptable.
NC	8, 9, 12, 20,43,45, 46,47	N/A	No Connection. Recommended to be grounded.
VDDO	10, 15, 19, 27, 34, 38, 42	PWR	Power Supply for the Output Drivers, nominal 3.3 V
OEb0	11	I	Active low input for enabling Clock pair 0. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs
CLKOUT0P	13	0	0.75 V differential true clock output

Pin Name	Pin No.	I/O Type	Description		
CLKOUTON	14	0	0.75 V differential Complementary clock output		
CLKOUT1P	16	0	0.75 V differential true clock output		
CLKOUT1N	17	0	0.75 V differential Complementary clock output		
OEb1	18	I	Active low input for enabling Clock pair 1. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs		
CLKOUT2P	21	0	0.75 V differential true clock output		
CLKOUT2N	22	0	0.75 V differential Complementary clock output		
OEb2	23	I	Active low input for enabling Clock pair 2. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs		
OEb3	24	Ι	Active low input for enabling Clock pair 3. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs		
CLKOUT3P	25	0	0.75 V differential true clock output		
CLKOUT3N	26	0	0.75 V differential Complementary clock output		
CLKOUT4P	28	0	0.75 V differential true clock output		
CLKOUT4N	29	0	0.75 V differential Complementary clock output		
OEb4	30	I	Active low input for enabling Clock pair 4. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs		
OEb5	31	I	Active low input for enabling Clock pair 5. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs		
CLKOUT5P	32	0	0.75 V differential true clock output		
CLKOUT5N	33	0	0.75 V differential Complementary clock output		
CLKOUT6P	35	0	0.75 V differential true clock output		
CLKOUT6N	36	0	0.75 V differential Complementary clock output		
OEb6	37	I	Active low input for enabling Clock pair 6. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs		
CLKOUT7P	39	0	0.75 V differential true clock output		
CLKOUT7N	40	0	0.75 V differential Complementary clock output		
OEb7	41	I	Active low input for enabling Clock pair 7. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs		
VDD	44	PWR	3.3 V power for the Core Supply.		

Note:

1. PU/PD is weak Pull Up/Pull down with 120 k Ω resistor

Typical Application

Functional Description

Figure 3 shows a SiT92318 typical application. In this application, a clock generator provides a 100-MHz reference to the SiT92318 which then distributes that clock to PCIe endpoints. The clock generator may either be a

discrete clock generator, or it may be integrated in a larger component such as a Platform Controller Hub (PCH) or application processor.

Figure 3. Typical Application Diagram

Parameter Measurement Information

Figure 4. AC Test Mode

Figure 5. DC Simulation Mode

Figure 6. Phase Noise Measurement Setup

Table 10. Input vs Output States

Control Inputs	CLKIN		OEb[7:0] HARDWARE CONTROL REC	CLKOUT[7:0]_P / CLKOUT[7:0]_N																																						
CKPWRGD_PDN		OE[7:0]b Pin	OUT_EN_CLK[7:0] STOP_STATE_CONFIG_REG																																							
				0	LOW/LOW																																					
		v	0	0	1	HiZ/HiZ																																				
1			~		2	High/Low																																				
	Y			3	Low/High																																					
	~	1	X	0	LOW/LOW																																					
				х	х	х	x	x	x	1	HiZ/HiZ																															
										X	~		2	High/Low																												
				3	Low/High																																					
	Running	0	1	Х	Output Follow input																																					
						0	LOW/LOW																																			
0	v	v	x -	1	HiZ/HiZ																																					
U	^	X			^		^	^	^		X	X	X	X	X	X	X	X	X –	X	× –	X	X	X	X –	X	X	X	X –	X –	X	X –	X –	X	x x –	X –	X -	X -	X	X 2	2	High/Low
				3	Low/High																																					

Power Good Assertion and De-assertion

Power Good (CKPWRGD_PDN) is asserted high and deasserted low. De-assertion of CKPWRGD_PDN (pulling the signal low) is equivalent to indicating a powerdown condition. CKPWRGD_PDN (assertion) is used by the DB800Z to sample initial configurations such as SA selections.

After CKPWRGD_PDN has been asserted high for the first time, the pin becomes a PWRDNb (Power Down) pin that can be used to shut off all clocks cleanly and instruct the device to invoke power savings mode. PWRDNb is a completely asynchronous active low input.

When entering power savings mode, PWRDNb should be asserted low prior to shutting off the input clock or power to ensure all clocks shut down in a glitch free manner. When PWRDNb is de-asserted high, all clocks will start and stop without any abnormal behavior and will meet all AC and DC parameters.

NOTE: The assertion and de-assertion of PWRDNb is asynchronous.

Warning: Disabling of the CLKIN input clock prior to the assertion of PWRDNb is an undefined

mode and is not recommended. Operation in this mode may result in glitches.

Power Good De-Assertion

When PWRDNb is sampled low by two consecutive rising edges of CLKINN, all differential outputs must be held Tri-stated on the next CLKINN high to low transition.

Figure 7. Power Good Assertion

Power Good Assertion

CKPWRGD_PDN must not be asserted to the clock buffer before VDD reaches VDD_{MIN}. Prior to VDD_{MIN} it is recommended to hold PWRGD low (less than 0.5 V).

Figure 8. Power Good vs VDD3P3 relationship

The power-up latency in T_{STABLE} is to be less than 1.8 ms. This is the time from the valid CLKINx input and the assertion of the PWRGD signal until the output of the stable clocks from the buffer chip.

All differential outputs stopped in a Tri-state condition resulting from power down must be driven high in less than $300 \ \mu s$ of the PWRGD assertion to a voltage greater than $200 \ mV$.

Figure 9. Power Good Assertion

SMBus Parameters

Table 11. SMBus Timing

VDDIN, VDDO = 3.3 V ±5%, -40°C ≤ T_A ≤ 105°C. Typical values are at VDDO = VDDIN= 3.3 V, 25°C (unless otherwise specified)

Parameter	Conditions	Symbol	Min	Тур	Max	Units	
SMBus operating Frequency		fsмв	10		400	kHz	
Bus Free time between Stop and Start		t _{BUF}					
Start Condition hold time	SMBCLK low after SMBDAT low	thd_sta				μs	
Start Condition setup time	SMBCLK high before SMBDAT low	t _{SU_STA}					
Stop Condition setup time		tsu_sто					
SMBDAT hold time		t _{HD_DAT}				20	
SMBDAT setup time		t _{su_dat}				115	
SMBCLK low timeout detect	Device input clock frequency	t _{TIMEOUT}				Cycles	
SMBCLK low period		t _{LOW}					
SMBCLK high period		tнідн				μs	
SMBCLK/SMBDAT fall time	Min V _{IH} +0.15 V to Max V _{IL} - 0.15 V	t⊨				25	
SMBCLK/SMBDAT rise time	Max V _{IL} -0.15 V to Min V _{IH} +0.15 V	t _R				115	

Register Address

Table 12. Register Map Address

Register Address	Bit Range	Register name	Default	Туре	Bit Name	Description and Function	
0x00	7:0	RCR1	0	RO	RESERVED		
7			1		DIF5_ENABLE		
6	6		1	1	DIF4_ENABLE		
	5	OE_CTRL 1	1		DIF3_ENABLE	1: Output Enable 0: STOP_STATE Mode	
0×01	4		1	RW	DIF2_ENABLE		
0.01	3		0		RESERVED		
	2		1		DIF1_ENABLE		
	1		1		DIF0_ENABLE		
	0		0		RESERVED		
	7:3		0		RESERVED		
0,402	2		1	DW/	DIF7_ENABLE	1: Output Enable 0: STOP_STATE Mode	
0x02	1	UE_CIRL 2	0	KVV	RESERVED		
	0		1		DIF6_ENABLE		
0x03	7:0	RCR2	0	RO	RESERVED		
0x04	7:0	RCR3	0	RO	RESERVED		
0.405	7:4		0	DO	REVISION_ID	0000: revA	
0x05	3:0	VEN_KEV_ID	0	RU	VENDOR_ID	0000: SiTime product	
0x06	7:0	DEV_ID	0	RO	DEVICE_ID	Device ID bits[7:0] map to register bits[7:0] directly. Product Code	
	7:5		0	RO	RESERVED		
0x07	4:0	BYTES_READ_COUNT	8	RW	BYTES_READ_COUNT_VALUE	Writing to this register configures how many bytes will be read back on a block	
	7		0		RB_OE7		
	6		0		RB_OE6	- - 	
	5 4		0		RB_OE5		
0×10			0	PO	RE_OE4		
3	OE_PIN_READ_BACK	0	ĸo	RB_OE3	Oulput Enabled Fill lead back		
	2		0		RB_OE2		
	1	1			RB_OE1]	
	0		0		RB_OE0		
	7:2		0	RO	RESERVED		
0x14	1:0	STOP_STATE_CONFIG_RE G	0	RW	00 = Low/Lo 01 = Hiz/Hi 10 = High/Lc 11 Low/Hig		

Package Dimensions and Patterns

Figure 10.	Package Diagram	SiT92318 48	pin VQFN
			P

Cumbal	Millimeter			
Symbol	MIN	NOM	MAX	
А	0.80	0.85	0.95	
A1	0	0.02	0.05	
b	0.15	0.20	0.25	
с	0.18	0.20	0.23	
D	5.90	6.00	6.10	
D2	4.10	4.20	4.30	
е	0.40 _{BSC}			
Ne	4.40 _{BSC}			
Nd	4.40 _{BSC}			
E	5.90	6.00	6.10	
E2	4.10	4.20	4.30	
L	0.35	0.40	0.45	
К	0.20	0.50	0.55	
h	0.30	0.35	0.40	

Table 13. Revision History

Revisions	Release Date	Change Summary
0.5	11-Dec-2023	Initial Release
0.51	9-Jan-2025	Updated with "P" reel code Updated datasheet format

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2023-2025. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.