SiT8945B

115.2 – 137 MHz, -55 to 125°C, Endura™ Series Oscillator

Features

- Best acceleration sensitivity of 0.1 ppb/g
- Any frequencies between 115.2 MHz and 137 MHz accurate to 6 decimal points
- 100% pin-to-pin drop-in replacement to quartz-based XO
- Excellent total frequency stability as low as ±20 ppm
- Low power consumption of 3.8 mA typical at 1.8 V
- LVCMOS/LVTTL compatible output
- AEC-Q100 qualified
- Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5, 5.0 x 3.2, 7.0 x 5.0 mm x mm
- RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free
- Contact SiTime for up-screening and LAT programs

Applications

- Avionics systems
- Field communication systems
- Telemetry applications

Electrical Characteristics

Table 1. Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
				Freque	ncy Range	
Output Frequency Range	f	115.20	-	137	MHz	Refer to Tables 13 to 15 for the exact list of Supported Frequencies
		ı	Fre	equency Sta	ability and	Aging
Frequency Stability	F_stab	-20	-	+20	ppm	Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C, and
		-25	-	+25	ppm	 variations over operating temperature, rated power supply voltage and load (15 pF ±10%)
		-30	-	+30	ppm	(,,,,,,
		-50	-	+50	ppm	
Hysteresis	F_hys	-2	-	2	ppm	Per MIL-STD-55310, 3.6.9.2, -55°C to 125°C. 0.5°C/min, 50 cfm air flow
20-year Aging	F_aging	-	-	<u>+</u> 28	ppm	At 85°C, after 2-days of continuous operation
			Ор	erating Ter	nperaturel	Range
Operating Temperature	T_use	-40	-	+85	°C	AEC-Q100 Grade 3
Range (ambient)		-40	-	+105	°C	AEC-Q100 Grade 2
		-40	-	+125	°C	AEC-Q100 Grade 1
		-55	_	+125	°C	Extended cold, AEC-Q100 Grade1
	•			Rugged Ch	naracterist	ics
Acceleration (g) sensitivity, Gamma Vector	F_g	_	_	0.1	ppb/g	Low sensitivity grade; total gamma over 3 axes; 15 Hz to 2 kHz; MIL-PRF-55310, computed per section 4.8.18.3.1
			Supply V	oltage and	Current Co	onsumption
Supply Voltage	Vdd	1.62	1.8	1.98	V	All voltages between 2.25 V and 3.63 V including 2.5 V, 2.8 V, 3.0 V
		2.25	-	3.63	V	and 3.3 V are supported. Contact SiTime for 1.5 V support
Current Consumption	ldd	_	6	8	mA	No load condition, f = 125 MHz, Vdd = 2.25 V to 3.63 V
		_	4.9	6	mA	No load condition, f = 125 MHz, Vdd = 1.62 V to 1.98 V
			LVC	MOS Outp	ut Characte	eristics
Duty Cycle	DC	45	_	55	%	
Rise/Fall Time	Tr, Tf	-	1.5	3	ns	Vdd = 2.25V - 3.63V, 20% - 80%
		_	1.5	2.5	ns	Vdd = 1.8V, 20% - 80%
Output High Voltage	VOH	90%	-	-	Vdd	IOH = -4 mA (Vdd = 3.0 V or 3.3 V) IOH = -3 mA (Vdd = 2.8 V and Vdd = 2.5 V) IOH = -2 mA (Vdd = 1.8 V)
Output Low Voltage	VOL	-	-	10%	Vdd	IOL = 4 mA (Vdd = 3.0 V or 3.3 V) IOL = 3 mA (Vdd = 2.8 V and Vdd = 2.5 V) IOL = 2 mA (Vdd = 1.8 V)

Table 1. Electrical Characteristics (continued)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition		
Input Characteristics								
Input High Voltage	VIH	70%	-	_	Vdd	Pin 1, OE		
Input Low Voltage	VIL	-	-	30%	Vdd	Pin 1, OE		
Input Pull-up Impedance	Z_in	-	100	_	kΩ	Pin 1, OE logic high or logic low		
Startup and Resume Timing								
Startup Time	T_start	_	_	5	ms	Measured from the time Vdd reaches its rated minimum value		
Enable/Disable Time	T_oe	_	_	130	ns	f = 115.20 MHz. For other frequencies, T_oe = 100 ns + 3 * cycles		
Standby Current	I_std	-	2.6	_	μА	Vdd = 2.8 V to 3.3 V, ST = Low, Output is weakly pulled down		
		-	1.4	-	μА	Vdd = 2.5 V, ST = Low, Output is weakly pulled down		
		-	0.6	-	μА	Vdd = 1.8 V, ST = Low, Output is weakly pulled down		
				,	Jitter			
RMS Period Jitter	T_jitt	-	1.6	2.5	ps	f = 125 MHz, 2.25 V to 3.63 V		
		-	1.8	3	ps	f = 125 MHz, 1.8 V		
Peak-to-peak Period Jitter	T_pk	-	12	20	ps	f = 125 MHz, Vdd = 2.5 V, 2.8 V, 3.0 V or 3.3 V		
		-	14	30	ps	f = 125 MHz, Vdd = 1.8 V		
RMS Phase Jitter (random)	T_phj	-	0.7	-	ps	f = 125 MHz, Integration bandwidth = 900 kHz to 7.5 MHz		
		-	1.5	-	ps	f = 125 MHz, Integration bandwidth = 12 kHz to 20 MHz		

Table 2. Pin Description

Pin	Symbol		Functionality
1 OE/NC		Output Enable	H ^[1] : specified frequency output L: output is high impedance. Only output driver is disabled.
1 OE/NC	No Connect	Any voltage between 0 and Vdd or Open ^[1] : Specified frequency output. Pin 1 has no function.	
2	GND	Power	Electrical ground ^[2]
3	OUT	Output	Oscillator output
4	VDD	Power	Power supply voltage ^[2]

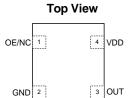


Figure 1. Pin Assignments

Notes:

- 1. In OE mode, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.
- 2. A capacitor of value 0.1 μF or higher between Vdd and GND is required.

Table 3. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
Vdd	-0.5	4	V
Electrostatic Discharge	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C
Junction Temperature ^[3]	-	150	°C

Note:

3. Exceeding this temperature for extended period of time may damage the device.

Table 4. Thermal Consideration[4]

Package	θJA, 4 Layer Board (°C/W)	θJA, 2 Layer Board (°C/W)	θJC, Bottom (°C/W)
7050	142	273	30
5032	97	199	24
3225	109	212	27
2520	117	222	26
2016	152	252	36

Note:

4. Refer to JESD51 for θ JA and θ JC definitions, and reference layout used to determine the θ JA and θ JC values in the above table.

Table 5. Maximum Operating Junction Temperature^[5]

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature		
85°C	93°C		
105°C	113°C		
125°C	133°C		

Note:

5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 6. Environmental Compliance

Parameter	Condition/Test Method	Value	Unit
Mechanical Shock	MIL-STD-883F, Method2002, Condition G	30,000	g
Mechanical Vibration	MIL-STD-883F, Method 2007	70	g
Vibration Fatigue	MIL-STD-883, Method 2005	20	g
Constant Acceleration	MIL-STD-883, Method 2001	30,000	g
Ambient Pressure Operating	MIL-STD-202, Method 105, Condition C	70,000	ft
Temperature Cycle	JESD22, Method A104		
Solderability	MIL-STD-883F, Method 2003		
Moisture Sensitivity Level	MSL1 @ 260°C		

SiT8945 is 100% screened in accordance with SiTime Endura flow.

Test Circuit and Waveform



Figure 2. Test Circuit^[6]

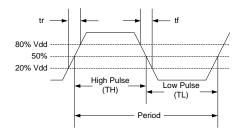
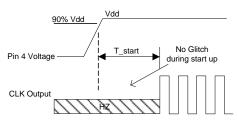
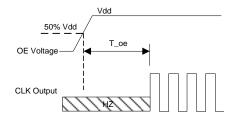



Figure 3. Waveform

Note:


6. Duty Cycle is computed as Duty Cycle = TH/Period.

Timing Diagrams

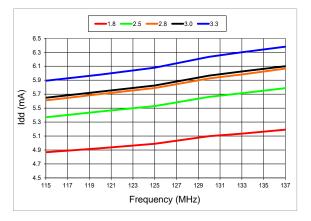

T_start: Time to start from power-off

Figure 4. Startup Timing (OE Mode)[7]

T_oe: Time to re-enable the clock output

Figure 5. OE Enable Timing (OE Mode Only)

T_oe: Time to put the output in High Z mode


Figure 6. OE Disable Timing (OE Mode Only)

Note:

7. SiT8945 has "no runt" pulses and "no glitch" output during startup or resume.

Performance Plots[8]

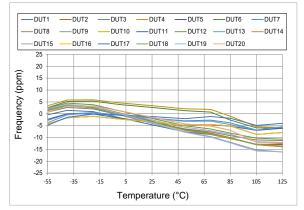
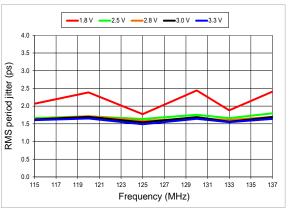



Figure 7. Idd vs Frequency

Figure 8. Frequency vs Temperature

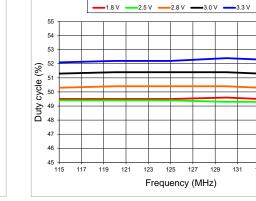
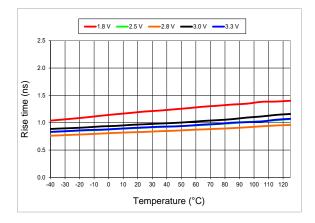



Figure 9. RMS Period Jitter vs Frequency

Figure 10. Duty Cycle vs Frequency

Frequency (MHz)

123 125 127 129

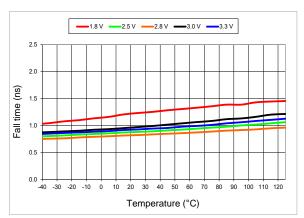
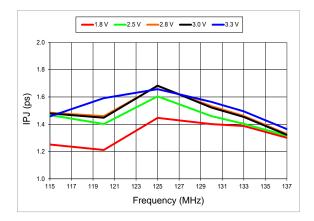



Figure 11. 20%-80% Rise Time vs Temperature

Figure 12. 20%-80% Fall Time vs Temperature

Performance Plots[8]

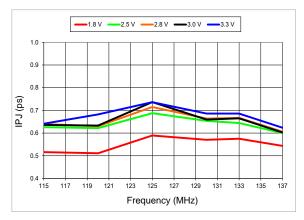


Figure 13. RMS Integrated Phase Jitter Random (12 kHz to 20 MHz) vs Frequency^[9]

Figure 14. RMS Integrated Phase Jitter Random (900 kHz to 20 MHz) vs Frequency^[9]

Notes:

- 8. All plots are measured with 15 pF load at room temperature, unless otherwise stated.
- 9. Phase noise plots are measured with Agilent E5052B signal source analyzer.

Programmable Drive Strength

The SiT8945 includes a programmable drive strength feature to provide a simple, flexible tool to optimize the clock rise/fall time for specific applications. Benefits from the programmable drive strength feature are:

- Improves system radiated electromagnetic interference (EMI) by slowing down the clock rise/fall time.
- Improves the downstream clock receiver's (RX) jitter by decreasing (speeding up) the clock rise/fall time.
- Ability to drive large capacitive loads while maintaining full swing with sharp edge rates.

For more detailed information about rise/fall time control and drive strength selection, see the SiTime Application Notes section.

EMI Reduction by Slowing Rise/Fall Time

Figure 15 shows the harmonic power reduction as the rise/fall times are increased (slowed down). The rise/fall times are expressed as a ratio of the clock period. For the ratio of 0.05, the signal is very close to a square wave. For the ratio of 0.45, the rise/fall times are very close to near-triangular waveform. These results, for example, show that the 11th clock harmonic can be reduced by 35 dB if the rise/fall edge is increased from 5% of the period to 45% of the period.

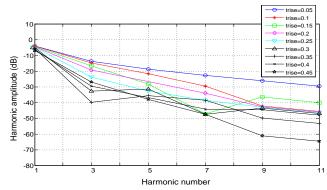


Figure 15. Harmonic EMI reduction as a Function of Slower Rise/Fall Time

Jitter Reduction with Faster Rise/Fall Time

Power supply noise can be a source of jitter for the downstream chipset. One way to reduce this jitter is to speed up the rise/fall time of the input clock. Some chipsets may also require faster rise/fall time in order to reduce their sensitivity to this type of jitter. Refer to the Rise/Fall Time Tables (Table 7 to Table 11) to determine the proper drive strength.

High Output Load Capability

The rise/fall time of the input clock varies as a function of the actual capacitive load the clock drives. At any given drive strength, the rise/fall time becomes slower as the output load increases. As an example, for a 3.3 V SiT8945 device with default drive strength setting, the typical rise/fall time is 0.46 ns for 5 pF output load. The typical rise/fall time slows down to 1 ns when the output load increases to 15 pF. One can choose to speed up the rise/fall time to 0.72 ns by then increasing the driven strength setting on the SiT8945 to "F".

The SiT8945 can support up to 30 pF in maximum capacitive loads with up to 3 additional drive strength settings. Refer to the Rise/Tall Time Tables (Table 7 to 11) to determine the proper drive strength for the desired combination of output load vs. rise/fall time.

SiT8945 Drive Strength Selection

Tables 7 through 11 define the rise/fall time for a given capacitive load and supply voltage.

- 1. Select the table that matches the SiT8945 nominal supply voltage (1.8 V, 2.5 V, 2.8 V, 3.0 V, 3.3 V)
- Select the capacitive load column that matches the application requirement (5 pF to 30 pF)
- Under the capacitive load column, select the desired rise/fall times.
- **4.** The left-most column represents the part number code for the corresponding drive strength.
- **5.** Add the drive strength code to the part number for ordering purposes.

Calculating Maximum Frequency

Based on the rise and fall time data given in Tables 7 through 11, the maximum frequency the oscillator can operate with guaranteed full swing of the output voltage over temperature as follows:

Max Frequency =
$$\frac{1}{5 \times \text{Trf}_20/80}$$

where $Trf_20/80$ is the typical value for 20%-80% rise/fall time.

Example 1

Calculate f_{MAX} for the following condition:

- Vdd = 3.3 V (Table 11)
- Capacitive Load: 30 pF
- Desired Tr/f time = 1.46 ns (rise/fall time part number code = U)

Part number for the above example:

SiT8945BME12-18EA137.000000

Drive strength code is inserted here. Default setting is "-"

Rise/Fall Time (20% to 80%) vs CLOAD Tables

Table 7. Vdd = 1.8 V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)				
Drive Strength\ C _{LOAD}	5 pF	15 pF		
Т	0.93	n/a		
Е	0.78	n/a		
U	0.70	1.48		
F or "-": default	0.65	1.30		

Table 9. Vdd = 2.8 V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)					
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF		
R	1.29	n/a	n/a		
В	0.97	n/a	n/a		
T or "-": default	0.55	1.12	n/a		
E	0.44	1.00	n/a		
U	0.34	0.88	n/a		
F	0.29	0.81	1.48		

Table 11. Vdd = 3.3 V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)					
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF		
R	1.16	n/a	n/a		
В	0.81	n/a	n/a		
T or "-": default	0.46	1.00	n/a		
E	0.33	0.87	n/a		
U	0.28	0.79	1.46		
F	0.25	0.72	1.31		

Table 8. Vdd = 2.5 V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall 1	Rise/Fall Time Typ (ns)				
Drive Strength \ C _{LOAD}	5 pF	15 pF			
R	1.45	n/a			
В	1.09	n/a			
T or "-": default	0.62	1.28			
E	0.54	1.00			
U	0.43	0.96			
F	0.34	0.88			

Table 10. Vdd = 3.0 V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)					
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF		
R	1.22	n/a	n/a		
В	0.89	n/a	n/a		
T or "-": default	0.51	1.00	n/a		
E	0.38	0.92	n/a		
U	0.30	0.83	n/a		
F	0.27	0.76	1.39		

Note

^{10. &}quot;n/a" indicates that the resulting rise/fall time from the respective combination of the drive strength and output load does not provide rail-to-rail swing and is not available.

Pin 1 Configuration Options (OE or NC)

Pin 1 of the SiT8945 can be factory-programmed to support two modes: Output Enable (OE) or No Connect (NC). These modes can also be programmed with the Time Machine II using Field Programmable Oscillators.

Output Enable (OE) Mode

In the OE mode, applying logic low to the OE pin only disables the output driver and puts it in Hi-Z mode. The core of the device continues to operate normally. Power consumption is reduced due to the inactivity of the output. When the OE pin is pulled High, the output is typically enabled in <1 μs .

No Connect (NC) Mode

In the NC mode, the device always operates in its normal mode and outputs the specified frequency regardless of the logic level on pin 1.

Table 12 below summarizes the key relevant parameters in the operation of the device in OE or NC mode.

Table 12. OE vs. NC

	OE	NC
Active current 125 MHz (max, 1.8 V)	6 mA	6 mA
OE disable current (max. 1.8 V)	4 mA	N/A
OE enable time at 110 MHz (max)	130 ns	N/A
Output driver in OE disable	High Z	N/A

Output on Startup and OE Enable

The SiT8945 comes with gated output. Its clock output is accurate to the rated frequency stability within the first pulse from initial device startup.

In addition, the SiT8945 supports "no runt" pulses and "no glitch" output during startup or when the output driver is reenabled from the OE disable mode as shown in the waveform captures in Figure 16 and Figure 17.

Figure 16. Startup Waveform vs. Vdd

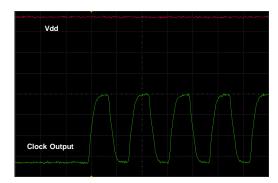
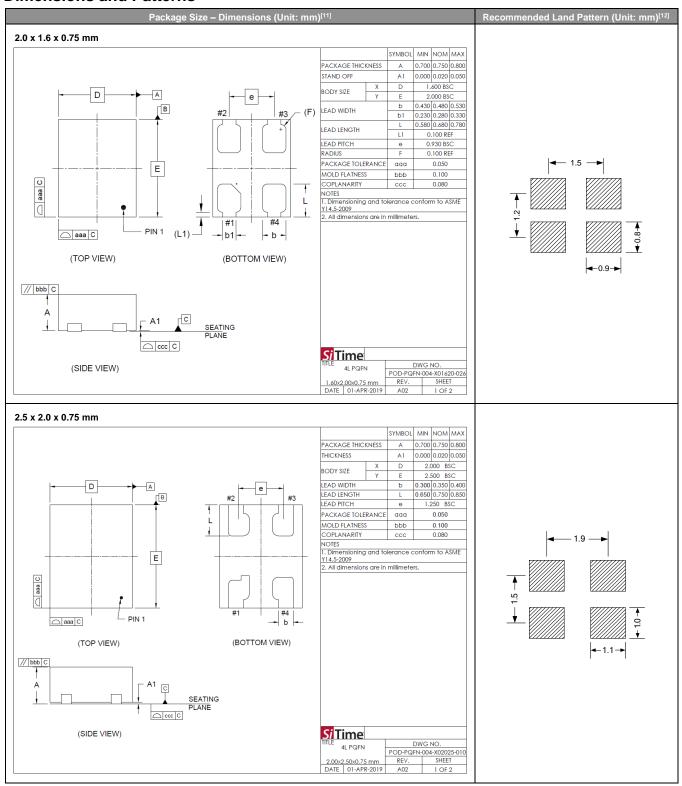
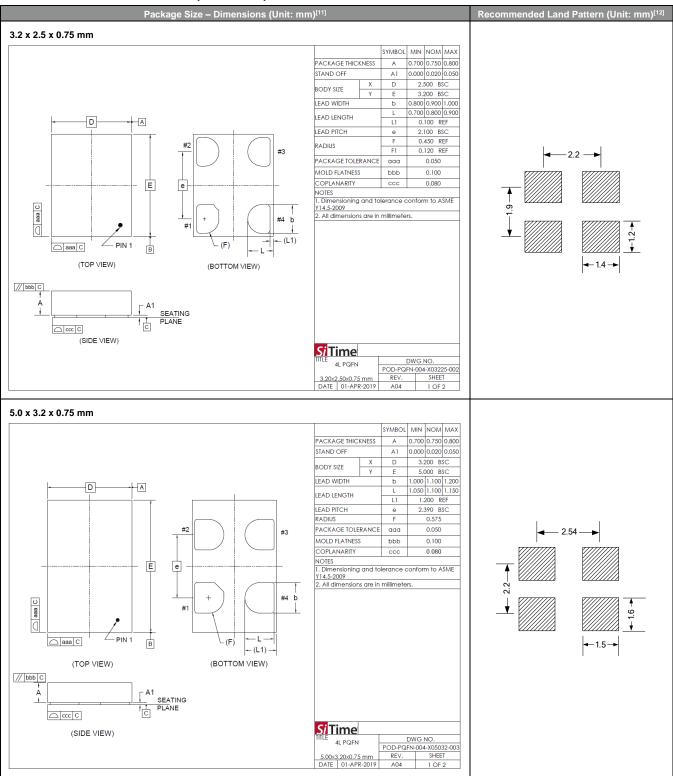
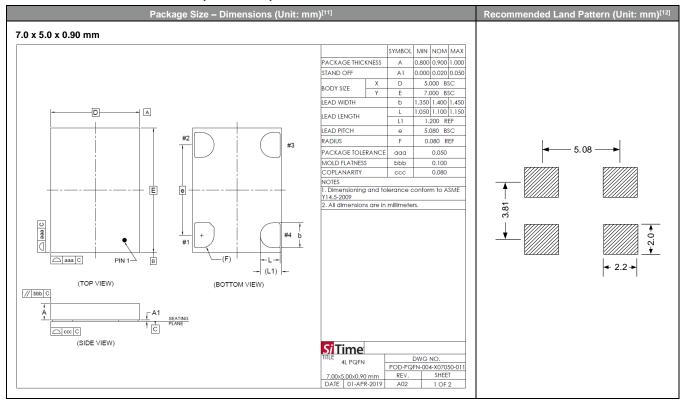



Figure 17. Startup Waveform vs. Vdd (Zoomed-in View of Figure 16)

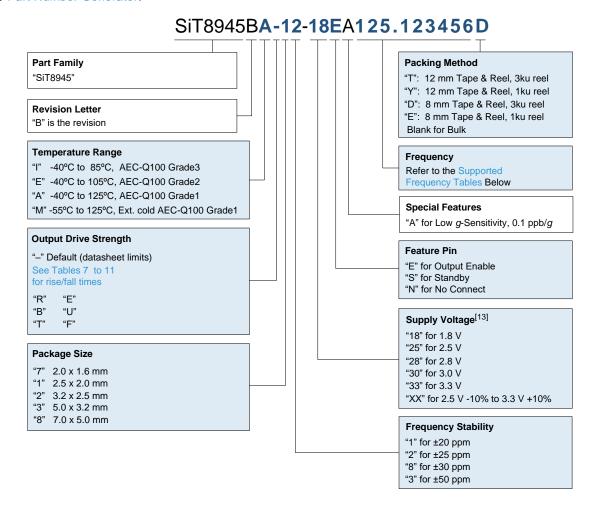


Dimensions and Patterns



Dimensions and Patterns (continued)

Dimensions and Patterns (continued)


Notes:

- 11. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
- 12. A capacitor of value 0.1 μF or higher between Vdd and GND is required.

Ordering Information

The following part number guide is for reference only. To customize and build an exact part number, use the SiTime Part Number Generator.

Note:

13. The voltage portion of the SiT8945 part number consists of two characters that denote the specific supply voltage of the device. The SiT8945 supports either 1.8 V ±10% or any voltage between 2.25 V and 3.63 V. In the 1.8 V mode, one can simply insert 18 in the part number. In the 2.5 V to 3.3 V mode, two digits such as 18, 25 or 33 can be used in the part number to reflect the desired voltage. Alternatively, "XX" can be used to indicate the entire operating voltage range from 2.25 V to 3.63 V.

Table 13. Supported Frequencies (-40°C to +85°C)[14]

Frequency Range		
Min.	Max.	
115.200000 MHz	137.000000 MHz	

Table 14. Supported Frequencies (-40°C to +105°C or -40°C to +125°C) [14, 15]

Frequency Range		
Min.	Max.	
115.194001 MHz	117.810999 MHz	
118.038001 MHz	118.593999 MHz	
118.743001 MHz	122.141999 MHz	
122.705001 MHz	123.021999 MHz	
123.348001 MHz	137.000000 MHz	

Table 15. Supported Frequencies (-55°C to +125°C) [14, 15]

Frequency Range		
Min.	Max.	
119.342001 MHz	120.238999 MHz	
120.262001 MHz	121.169999 MHz	
121.243001 MHz	121.600999 MHz	
123.948001 MHz	137.000000 MHz	

Notes:

- 14. Any frequency within the min and max values in the above tables are supported with 6 decimal places of accuracy.
- 15. Please contact SiTime for frequencies that are not listed in the tables above.

Table 16. Ordering Codes for Supported Tape & Reel Packing Method

Device Size	16 mm T&R (3ku)	16 mm T&R (1ku)	12 mm T&R (3ku)	12 mm T&R (1ku)	8 mm T&R (3ku)	8 mm T&R (1ku)
2.0 x 1.6 mm	-	_	-	_	D	E
2.5 x 2.0 mm	-	_	-	-	D	E
3.2 x 2.5 mm	-	_	-	-	D	E
5.0 x 3.2 mm	-	_	Т	Υ	-	-
7.0 x 5.0 mm	Т	Υ	-	-	-	-

Table 17. Revision History

Revision	Release Date	Change Summary
0.5	22-Jul-2019	First release
1.0	24-Jul-2020	Final release Formatting and date format changes
1.1 30-Jun-2023 Added Frequency Hysterisis and 20-yr aging, Added Endura Screening, Clarified test conditions of Table 6. Environmental Compliance		

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2019-2023. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.