Description

The **SiT5358** is a precision MEMS Super-TCXO optimized for ±50 ppb stability from 0°C to 70°C. It supports ±100 ppb stability in a wider temperature range (down to -40°C and up to 105°C). Engineered for best dynamic performance, it is ideal for high reliability telecom, wireless and networking, industrial, precision GNSS and audio/video applications.

Leveraging SiTime’s unique DualMEMS™ temperature sensing and TurboCompensation™ technologies, the SiT5358 delivers the best dynamic performance for timing stability in the presence of environmental stressors such as air flow, temperature perturbation, vibration, shock, and electromagnetic interference. This device also integrates multiple on-chip regulators to filter power supply noise, eliminating the need for a dedicated external LDO.

The SiT5358 offers three device configurations that can be ordered using Ordering Codes for:

1) TCXO with non-pullable output frequency,
2) VCTCXO allowing voltage control of output frequency, and
3) DCTCXO, enabling digital control of output frequency using an I2C interface, pullable to 5 ppt (parts per trillion) resolution.

The SiT5358 can be factory programmed for any combination of voltage, and pull range. Programmability enables designers to optimize clock configurations while eliminating long lead times and customization costs associated with quartz devices where each frequency is custom built.

Refer to **Manufacturing Guideline** for proper reflow profile and PCB cleaning recommendations to ensure best performance.

Features

- Any frequency from 1 MHz to 60 MHz in 1 Hz steps
- Factory programmable options for low lead time
- Best dynamic stability under airflow, thermal shock
 - ±50 ppb stability over temperature, 0°C to 70°C
 - ±1 ppb/°C typical frequency slope (ΔF/ΔT)
 - 1.5e-11 ADEV at 10 second averaging time
- No activity dips or micro jumps
- Resistant to shock, vibration and board bending
- On-chip regulators eliminate the need for external LDOs
- Digital frequency pulling (DCTCXO) via I2C
 - Digital control of output frequency and pull range
 - Up to ±3200 ppm pull range
 - Frequency-pull resolution down to 5 ppt
- 2.5 V, 2.8 V, 3.0 V and 3.3 V supply voltage
- LVCMOS or clipped sinewave output
- RoHS and REACH compliant
- Pb-free, Halogen-free, Antimony-free
- 5.0 mm x 3.2 mm ceramic package

Applications

- 4G/5G radio, Small cell
- IEEE1588 boundary and grandmaster clocks
- Carrier-grade routers and switches
- Synchronous Ethernet
- Optical transport – SONET/SDH, OTN, Stratum 3
- DOCSIS 3.x remote PHY
- GPS disciplined oscillators
- Precision GNSS systems
- Test and measurement

Block Diagram

![SiT5358 Block Diagram](image)

5.0 mm x 3.2 mm Package Pinout

![Pin Assignments (Top view)](image)

(Refer to **Table 13** for Pin Descriptions)
Ordering Information

The part number guide illustrated below is for reference only, in which boxes identify order codes having more than one option. To customize and build an exact part number, use the SiTime Part Number Generator. To validate the part number, use the SiTime Part Number Decoder.

Notes:
1. "*" corresponds to the default rise/fall time for LVCMOS output as specified in Table 1 (Electrical Characteristics). Contact SiTime for other rise/fall time options for best EMI or driving multiple loads. For differential outputs, contact SiTime.
2. Bulk is available for sampling only.
TABLE OF CONTENTS

Description ... 1
Features .. 1
Applications .. 1
Block Diagram ... 1
5.0 mm x 3.2 mm Package Pinout ... 1
Ordering Information ... 2
Electrical Characteristics .. 4
Device Configurations and Pin-outs .. 10
 Pin-out Top Views ... 10
Test Circuit Diagrams for LVCMOS and Clipped Sinewave Outputs 11
Waveforms .. 13
Timing Diagrams .. 14
Stability Diagrams .. 14
Typical Performance Plots ... 15
Architecture Overview .. 19
 Frequency Stability ... 19
 Output Frequency and Format .. 19
 Output Frequency Tuning ... 19
 Pin 1 Configuration (OE, VC, or NC) .. 20
Device Configurations ... 20
 TCXO Configuration .. 20
 VCTCXO Configuration ... 21
 DCTCXO Configuration ... 22
VCTCXO-Specific Design Considerations .. 23
 Linearity ... 23
 Control Voltage Bandwidth ... 23
 FV Characteristic Slope K_v .. 23
 Pull Range, Absolute Pull Range ... 24
DCTCXO-Specific Design Considerations ... 25
 Pull Range and Absolute Pull Range .. 25
Output Frequency ... 26
 I^2C Control Registers .. 28
 Register Descriptions .. 28
 Register Address: 0x00. Digital Frequency Control Least Significant Word (LSW) 28
 Register Address: 0x01. OE Control, Digital Frequency Control Most Significant Word (MSW) ... 29
 Register Address: 0x02. DIGITAL PULL RANGE CONTROL[18] ... 30
Serial Interface Configuration Description ... 31
Serial Signal Format ... 31
 Parallel Signal Format .. 32
 Parallel Data Format ... 32
 I^2C Timing Specification ... 34
 I^2C Device Address Modes ... 35
 Schematic Example .. 36
Dimensions and Patterns ... 37
Layout Guidelines .. 38
Manufacturing Guidelines ... 38
Additional Information ... 39
Revision History .. 40
Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and 3.3 V Vdd.

Table 1. Output Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Coverage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Output Frequency Range</td>
<td>F_nom</td>
<td>1</td>
<td>–</td>
<td>60</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated-stability Temperature Range</td>
<td>T_rated</td>
<td>0</td>
<td>–</td>
<td>+70</td>
<td>°C</td>
<td>Commercial, ambient temperature</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_oper</td>
<td>0</td>
<td>–</td>
<td>+70</td>
<td>°C</td>
<td>Commercial, ambient temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-20</td>
<td>–</td>
<td>+70</td>
<td>°C</td>
<td>Extended commercial, ambient temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40</td>
<td>–</td>
<td>+85</td>
<td>°C</td>
<td>Industrial, ambient temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-40</td>
<td>–</td>
<td>+105</td>
<td>°C</td>
<td>Extended industrial, ambient temperature</td>
</tr>
<tr>
<td>Frequency Stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Stability over Temperature</td>
<td>F_stab</td>
<td>–</td>
<td>–</td>
<td>±50</td>
<td>ppb</td>
<td>Over rated-stability temperature range (T_rated) as shown in Figure 49; referenced to (max frequency + min frequency)/2 over the temperature range. V0=Vdd/2 for VCTCXO</td>
</tr>
<tr>
<td>Initial Tolerance</td>
<td>F_init</td>
<td>–</td>
<td>–</td>
<td>±0.3</td>
<td>ppm</td>
<td>Initial frequency at 25°C at 48 hours after 2 reflows</td>
</tr>
<tr>
<td>Supply Voltage Sensitivity</td>
<td>F_Vdd</td>
<td>–</td>
<td>±0.4</td>
<td>±1.3</td>
<td>ppm</td>
<td>Over rated-stability temperature range (T_rated); Vdd ±5%</td>
</tr>
<tr>
<td>Output Load Sensitivity</td>
<td>F_load</td>
<td>–</td>
<td>±0.5</td>
<td>±2.5</td>
<td>ppm</td>
<td>Over operating temperature range (T_oper); Vdd ±5%</td>
</tr>
<tr>
<td>Frequency vs. Temperature Slope</td>
<td>ΔF/ΔT</td>
<td>–</td>
<td>±0.9</td>
<td>±2</td>
<td>ppb/°C</td>
<td>0.5°C/min temperature ramp rate, -20 to 85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±1</td>
<td>±3.5</td>
<td>ppb/°C</td>
<td>0.5°C/min temperature ramp rate, -40 to -20°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±0.9</td>
<td>±3.3</td>
<td>ppb/°C</td>
<td>0.5°C/min temperature ramp rate, 85 to 105°C</td>
</tr>
<tr>
<td>Dynamic Frequency Change during Temperature Ramp</td>
<td>F_dynamic</td>
<td>±0.008</td>
<td>±0.02</td>
<td>ppm/s</td>
<td>0.5°C/min temperature ramp rate, -20 to 85°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±0.01</td>
<td>±0.03</td>
<td>ppm/s</td>
<td>0.5°C/min temperature ramp rate, -40 to -20°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±0.008</td>
<td>±0.028</td>
<td>ppm/s</td>
<td>0.5°C/min temperature ramp rate, 85 to 105°C</td>
</tr>
<tr>
<td>24-hour holdover stability</td>
<td>F_24_Hold</td>
<td>–</td>
<td>–</td>
<td>±0.15</td>
<td>ppm</td>
<td>Inclusive of frequency variation due to temperature, ±10% supply variation, ±1.5 pF load variation and 24-hour aging</td>
</tr>
<tr>
<td>Hysteresis Over Temperature Contact</td>
<td>F_hys</td>
<td>–</td>
<td>±25</td>
<td>±42</td>
<td>ppb</td>
<td>-40 to 105°C, 0.5°C/min ramp rate, defined as ±ΔF/2 as shown in Figure 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±15</td>
<td>±27</td>
<td>ppb</td>
<td>-40 to 85°C, 0.5°C/min ramp rate, defined as ±ΔF/2 as shown in Figure 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±10</td>
<td>±20</td>
<td>ppb</td>
<td>-20 to 70°C, 0.5°C/min ramp rate, defined as ±ΔF/2 as shown in Figure 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>±9</td>
<td>±19</td>
<td>ppb</td>
<td>0 to 70°C, 0.5°C/min ramp rate, defined as ±ΔF/2 as shown in Figure 19; Refer to Figure 46 for typical plot.</td>
</tr>
<tr>
<td>One-Day Aging</td>
<td>F_1d</td>
<td>–</td>
<td>±0.5</td>
<td>±2.0</td>
<td>ppb</td>
<td>At 85°C, after 30-days of continued operation. Aging is measured with respect to day 31.</td>
</tr>
<tr>
<td>One-Year Aging</td>
<td>F_1y</td>
<td>–</td>
<td>±57</td>
<td>±230</td>
<td>ppb</td>
<td>At 85°C, after 2-days of continued operation. Aging is measured with respect to day 3.</td>
</tr>
<tr>
<td>5-Year Aging</td>
<td>F_5y</td>
<td>–</td>
<td>±73</td>
<td>±320</td>
<td>ppb</td>
<td>At 85°C, after 2-days of continued operation. Aging is measured with respect to day 3.</td>
</tr>
<tr>
<td>10-Year Aging</td>
<td>F_10y</td>
<td>–</td>
<td>±80</td>
<td>±360</td>
<td>ppb</td>
<td>At 85°C, after 2-days of continued operation. Aging is measured with respect to day 3.</td>
</tr>
<tr>
<td>20-Year Aging</td>
<td>F_20y</td>
<td>–</td>
<td>±87</td>
<td>±400</td>
<td>ppb</td>
<td>At 85°C, after 2-days of continued operation. Aging is measured with respect to day 3.</td>
</tr>
<tr>
<td>Allan deviation</td>
<td>ADEV</td>
<td>1.5e-11</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10 second averaging time[2]</td>
</tr>
</tbody>
</table>

LVCMOS Output Characteristics

Duty Cycle	DC	45	55	%		
Rise/Fall Time	Tr, Tr	0.8	1.2	1.9	ns	10% - 90% Vdd
Output Voltage High	VOH	90%	–	–	Vdd	IOH = +3 mA
Output Voltage Low	VOL	–	10%	Vdd	IOL = -3 mA	
Output Impedance	Z_out_c	17	–	–	Ohms	Impedance looking into output buffer, Vdd = 3.3 V
	17	–	–	Ohms	Impedance looking into output buffer, Vdd = 3.0 V	
	18	–	–	Ohms	Impedance looking into output buffer, Vdd = 2.8 V	
	19	–	–	Ohms	Impedance looking into output buffer, Vdd = 2.5 V	
Table 1. Output Characteristics (continued)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clipped Sinewave Output Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>V_out</td>
<td>0.8</td>
<td>–</td>
<td>1.2</td>
<td>V</td>
<td>Clipped sinewave output, 10 kΩ</td>
</tr>
<tr>
<td>Rise/Fall Time</td>
<td>Tr, Tf</td>
<td>–</td>
<td>3.5</td>
<td>4.6</td>
<td>ns</td>
<td>20% - 80% Vdd, F_nom = 19.2 MHz</td>
</tr>
<tr>
<td>Start-up Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start-up Time</td>
<td>T_start</td>
<td>–</td>
<td>2.5</td>
<td>3.5</td>
<td>ms</td>
<td>Time to first pulse, measured from the time Vdd reaches 90% of its final value, Vdd ramp time is 100 µs, 0V to Vdd</td>
</tr>
<tr>
<td>Output Enable Time</td>
<td>T_oe</td>
<td>–</td>
<td>–</td>
<td>680</td>
<td>ns</td>
<td>F_nom = 10 MHz. See Timing Diagrams section below</td>
</tr>
<tr>
<td>Time to Rated Frequency Stability</td>
<td>T_stability</td>
<td>–</td>
<td>5</td>
<td>45</td>
<td>ms</td>
<td>Time to first accurate pulse within rated stability, measured from the time Vdd reaches 90% of its final value. Vdd ramp time = 100 µs</td>
</tr>
</tbody>
</table>

Note:
3. Measured 2 hours after startup in a temperature chamber with a constant temperature in still air.
Table 2. DC Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Vdd</td>
<td>2.25</td>
<td>2.5</td>
<td>2.75</td>
<td>V</td>
<td>Contact SiTime for 2.25 V to 3.63 V continuous supply voltage support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.52</td>
<td>2.8</td>
<td>3.08</td>
<td>V</td>
<td>F_nom = 19.2 MHz, No Load, TCXO and DCTCXO modes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.7</td>
<td>3.0</td>
<td>3.3</td>
<td>V</td>
<td>F_nom = 19.2 MHz, No Load, VCTCXO mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.97</td>
<td>3.3</td>
<td>3.63</td>
<td>V</td>
<td>OE = GND, output weakly pulled down. TCXO, DCTCXO mode</td>
</tr>
<tr>
<td>Current Consumption</td>
<td>idd</td>
<td>–</td>
<td>44</td>
<td>53</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>48</td>
<td>57</td>
<td>mA</td>
<td>OE = GND, output weakly pulled down. VCTCXO mode</td>
</tr>
<tr>
<td>OE Disable Current</td>
<td>I_od</td>
<td>–</td>
<td>43</td>
<td>51</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>47</td>
<td>55</td>
<td>mA</td>
<td>OE = GND, output weakly pulled down. VCTCXO mode</td>
</tr>
</tbody>
</table>

Table 3. Input Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Impedance</td>
<td>Z_in</td>
<td>75</td>
<td>–</td>
<td>–</td>
<td>kΩ</td>
<td>Internal pull up to Vdd</td>
</tr>
<tr>
<td>Input High Voltage</td>
<td>VIH</td>
<td>70%</td>
<td>–</td>
<td>–</td>
<td>Vdd</td>
<td></td>
</tr>
<tr>
<td>Input Low Voltage</td>
<td>VIL</td>
<td>–</td>
<td>–</td>
<td>30%</td>
<td>Vdd</td>
<td></td>
</tr>
<tr>
<td>Frequency Tuning Range – Voltage Control or I^2C mode</td>
<td>PR</td>
<td>±6.25</td>
<td>–</td>
<td>–</td>
<td>ppm</td>
<td>VCTCXO mode. Contact SiTime for ±12.5 and ±25 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±6.25</td>
<td>10</td>
<td>12.5</td>
<td>±25</td>
<td>VCTCXO mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>80</td>
<td>100</td>
<td>125</td>
<td>VCTCXO mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>200</td>
<td>200</td>
<td>1200</td>
<td>VCTCXO mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200</td>
<td>±150</td>
<td>±200</td>
<td>±200</td>
<td>VCTCXO mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±600</td>
<td>±600</td>
<td>±800</td>
<td>±1200</td>
<td>VCTCXO mode</td>
</tr>
<tr>
<td>Absolute Pull Range^4^</td>
<td>APR</td>
<td>±6.25</td>
<td>–</td>
<td>–</td>
<td>ppm</td>
<td>Over rated temperature range (T_rated); DCTCXO, VCTCXO for PR = ±6.25 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±5.31</td>
<td>–</td>
<td>–</td>
<td>ppm</td>
<td>Over operating temperature range (T_oper); DCTCXO, VCTXO for PR = ±6.25 ppm</td>
</tr>
<tr>
<td>Upper Control Voltage</td>
<td>VC_U</td>
<td>90%</td>
<td>–</td>
<td>–</td>
<td>Vdd</td>
<td>VCTCXO mode</td>
</tr>
<tr>
<td>Lower Control Voltage</td>
<td>VC_L</td>
<td>–</td>
<td>10%</td>
<td>–</td>
<td>Vdd</td>
<td>VCTCXO mode</td>
</tr>
<tr>
<td>Control Voltage Input Impedance</td>
<td>VC_z</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>MΩ</td>
<td>VCTCXO mode</td>
</tr>
<tr>
<td>Control Voltage Input Bandwidth</td>
<td>VC_bw</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>kHz</td>
<td>VCTCXO mode. Contact SiTime for other bandwidth options</td>
</tr>
<tr>
<td>Frequency Control Polarity</td>
<td>F_pol</td>
<td>Positive</td>
<td></td>
<td></td>
<td>VCTCXO mode</td>
<td></td>
</tr>
<tr>
<td>Pull Range Linearity</td>
<td>PR_lin</td>
<td>0.5</td>
<td>1.0</td>
<td>0</td>
<td>%</td>
<td>VCTCXO mode</td>
</tr>
</tbody>
</table>

^4^ APR = PR – initial tolerance – 20-year aging – frequency stability over temperature. Refer to Table 17 for APR with respect to other pull range options.

Bus Speed

<table>
<thead>
<tr>
<th>Bus Speed</th>
<th>F_I2C</th>
<th>≤ 400 kHz</th>
<th>≤ 1000 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-40 to 105°C</td>
<td>-40 to 85°C</td>
</tr>
</tbody>
</table>

Input Voltage Low	VIL_I2C	–	–	30%	Vdd	DCTCXO mode
Input Voltage High	VIH_I2C	70%	–	–	Vdd	DCTCXO mode
Output Voltage Low	VOL_I2C	–	–	0.4	V	DCTCXO mode
Input Leakage current	l_v	0.5	24	µA	0.1 VDD < VOUT < 0.9 VDD. Includes typical leakage current from 200 kΩ pull resister to VDD. DCTCXO mode	
Input Capacitance	C_pol	–	–	5	pF	DCTCXO mode
Table 4. Jitter & Phase Noise – LVCMOS, 0°C to 70°C, -20°C to 70°C, and -40°C to 85°C

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Phase Jitter (random)</td>
<td>T_phj</td>
<td>-</td>
<td>0.31</td>
<td>0.48</td>
<td>ps</td>
<td>F_nom = 10 MHz, Integration bandwidth = 12 kHz to 5 MHz</td>
</tr>
<tr>
<td>RMS Period Jitter</td>
<td>T_jitt_per</td>
<td>-</td>
<td>0.8</td>
<td>1.1</td>
<td>ps</td>
<td>F_nom = 10 MHz, Population 10 k</td>
</tr>
<tr>
<td>Peak Cycle-to-Cycle Jitter</td>
<td>T_jitt_cc</td>
<td>-</td>
<td>6</td>
<td>9</td>
<td>ps</td>
<td>F_nom = 10 MHz, Population 1 k, measured as absolute value</td>
</tr>
</tbody>
</table>

Jitter

<table>
<thead>
<tr>
<th>Phase Noise</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hz offset</td>
<td></td>
<td>-</td>
<td>-80</td>
<td>-74</td>
<td>dBC/Hz</td>
<td>F_nom = 10 MHz</td>
</tr>
<tr>
<td>10 Hz offset</td>
<td></td>
<td>-</td>
<td>-108</td>
<td>-102</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>100 Hz offset</td>
<td></td>
<td>-</td>
<td>-127</td>
<td>-123</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>1 kHz offset</td>
<td></td>
<td>-</td>
<td>-148</td>
<td>-145</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>10 kHz offset</td>
<td></td>
<td>-</td>
<td>-154</td>
<td>-151</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>1 MHz offset</td>
<td></td>
<td>-</td>
<td>-167</td>
<td>-163</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>5 MHz offset</td>
<td></td>
<td>-</td>
<td>-168</td>
<td>-164</td>
<td>dBC/Hz</td>
<td></td>
</tr>
</tbody>
</table>

Spurios

| T_spur | -112 | -105 | dBc | F_nom = 10 MHz, 1 kHz to 5 MHz offsets |

Table 5. Jitter & Phase Noise – Clipped Sinewave, 0°C to 70°C, -20°C to 70°C, and -40°C to 85°C

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Phase Jitter (random)</td>
<td>T_phj</td>
<td>-</td>
<td>0.31</td>
<td>0.45</td>
<td>ps</td>
<td>F_nom = 19.2 MHz, Integration bandwidth = 12 kHz to 5 MHz</td>
</tr>
</tbody>
</table>

Jitter

<table>
<thead>
<tr>
<th>Phase Noise</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hz offset</td>
<td></td>
<td>-</td>
<td>-74</td>
<td>-68</td>
<td>dBC/Hz</td>
<td>F_nom = 19.2 MHz</td>
</tr>
<tr>
<td>10 Hz offset</td>
<td></td>
<td>-</td>
<td>-102</td>
<td>-97</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>100 Hz offset</td>
<td></td>
<td>-</td>
<td>-121</td>
<td>-117</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>1 kHz offset</td>
<td></td>
<td>-</td>
<td>-142</td>
<td>-140</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>10 kHz offset</td>
<td></td>
<td>-</td>
<td>-148</td>
<td>-146</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>100 kHz offset</td>
<td></td>
<td>-</td>
<td>-149</td>
<td>-145</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>1 MHz offset</td>
<td></td>
<td>-</td>
<td>-162</td>
<td>-158</td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>5 MHz offset</td>
<td></td>
<td>-</td>
<td>-164</td>
<td>-159</td>
<td>dBC/Hz</td>
<td></td>
</tr>
</tbody>
</table>

Spurios

| T_spur | -109 | -104 | dBc | F_nom = 19.2 MHz, 1 kHz to 5 MHz offsets |

Rev 1.01 Page 7 of 41 www.sitime.com
Table 6. Jitter & Phase Noise – LVCMOS, -40°C to 105°C

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Phase Jitter (random)</td>
<td>T_phj</td>
<td>–</td>
<td>0.31</td>
<td>0.48</td>
<td>ps</td>
<td>F_nom = 10 MHz, Integration bandwidth = 12 kHz to 5 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>0.31</td>
<td>0.50</td>
<td>ps</td>
<td>F_nom = 50 MHz, Integration bandwidth = 12 kHz to 20 MHz</td>
</tr>
<tr>
<td>RMS Period Jitter</td>
<td>T_jitt_per</td>
<td>–</td>
<td>0.8</td>
<td>1.1</td>
<td>ps</td>
<td>F_nom = 10 MHz, population 10 k</td>
</tr>
<tr>
<td>Peak Cycle-to-Cycle Jitter</td>
<td>T_jitt_cc</td>
<td>–</td>
<td>6</td>
<td>9</td>
<td>ps</td>
<td>F_nom = 10 MHz, population 1 k, measured as absolute value</td>
</tr>
</tbody>
</table>

Phase Noise

<table>
<thead>
<tr>
<th>Offset</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hz offset</td>
<td>-80</td>
<td>-74</td>
<td></td>
<td>dBC/Hz</td>
<td>F_nom = 10 MHz</td>
</tr>
<tr>
<td>10 Hz offset</td>
<td>-108</td>
<td>-102</td>
<td></td>
<td>dBC/Hz</td>
<td>TCXO and DCTCXO modes, and VCTCXO mode with ±6.25 ppm pull range</td>
</tr>
<tr>
<td>100 Hz offset</td>
<td>-127</td>
<td>-123</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>1 kHz offset</td>
<td>-148</td>
<td>-145</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>10 kHz offset</td>
<td>-154</td>
<td>-151</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>100 kHz offset</td>
<td>-154</td>
<td>-150</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>1 MHz offset</td>
<td>-167</td>
<td>-162</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>5 MHz offset</td>
<td>-168</td>
<td>-163</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>Spurious</td>
<td>-112</td>
<td>-101</td>
<td></td>
<td>dBC</td>
<td>F_nom = 10 MHz, 1 kHz to 5 MHz offsets, Vdd = 2.5 V</td>
</tr>
<tr>
<td></td>
<td>-112</td>
<td>-106</td>
<td></td>
<td>dBC</td>
<td>F_nom = 10 MHz, 1 kHz to 5 MHz offsets, Vdd = 2.8 V, 3.0 V, 3.3 V</td>
</tr>
</tbody>
</table>

Table 7. Jitter & Phase Noise – Clipped Sinewave, -40°C to 105°C

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Phase Jitter (random)</td>
<td>T_phj</td>
<td>–</td>
<td>0.31</td>
<td>0.46</td>
<td>ps</td>
<td>F_nom = 19.2 MHz, Integration bandwidth = 12 kHz to 5 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–</td>
<td>0.31</td>
<td>0.50</td>
<td>ps</td>
<td>F_nom = 60 MHz, Integration bandwidth = 12 kHz to 20 MHz</td>
</tr>
</tbody>
</table>

Phase Noise

<table>
<thead>
<tr>
<th>Offset</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hz offset</td>
<td>-74</td>
<td>-68</td>
<td></td>
<td>dBC/Hz</td>
<td>F_nom = 19.2 MHz</td>
</tr>
<tr>
<td>10 Hz offset</td>
<td>-102</td>
<td>-97</td>
<td></td>
<td>dBC/Hz</td>
<td>TCXO and DCTCXO modes, and VCTCXO mode with ±6.25 ppm pull range</td>
</tr>
<tr>
<td>100 Hz offset</td>
<td>-121</td>
<td>-117</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>1 kHz offset</td>
<td>-142</td>
<td>-140</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>10 kHz offset</td>
<td>-148</td>
<td>-146</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>100 kHz offset</td>
<td>-149</td>
<td>-145</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>1 MHz offset</td>
<td>-162</td>
<td>-158</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>5 MHz offset</td>
<td>-164</td>
<td>-159</td>
<td></td>
<td>dBC/Hz</td>
<td></td>
</tr>
<tr>
<td>Spurious</td>
<td>-109</td>
<td>-103</td>
<td></td>
<td>dBC</td>
<td>F_nom = 19.2 MHz, 1 kHz to 5 MHz offsets</td>
</tr>
</tbody>
</table>
Table 8. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td></td>
<td>-65 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>Continuous Power Supply Voltage Range (Vdd)</td>
<td></td>
<td>-0.5 to 4</td>
<td>V</td>
</tr>
<tr>
<td>Human Body Model (HBM) ESD Protection</td>
<td>JESD22-A114</td>
<td>2000</td>
<td>V</td>
</tr>
<tr>
<td>Soldering Temperature (follow standard Pb-free soldering guidelines)</td>
<td></td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature (follow standard Pb-free soldering guidelines)</td>
<td></td>
<td>130</td>
<td>°C</td>
</tr>
<tr>
<td>Input Voltage, Maximum</td>
<td>Any input pin</td>
<td>Vdd + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage, Minimum</td>
<td>Any input pin</td>
<td>-0.3</td>
<td>V</td>
</tr>
</tbody>
</table>

Note:
5. Exceeding this temperature for an extended period of time may damage the device.

Table 9. Thermal Considerations

<table>
<thead>
<tr>
<th>Package</th>
<th>Θ_JA (°C/W)</th>
<th>Θ_JC, Bottom (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic 5.0 mm x 3.2 mm</td>
<td>54</td>
<td>15</td>
</tr>
</tbody>
</table>

Note:
6. Measured in still air. Refer to JESD51 for Θ_JA and Θ_JC definitions.
7. Devices soldered on a JESD51 2s2p compliant board.

Table 10. Maximum Operating Junction Temperature

<table>
<thead>
<tr>
<th>Max Operating Temperature (ambient)</th>
<th>Maximum Operating Junction Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°C</td>
<td>80°C</td>
</tr>
<tr>
<td>85°C</td>
<td>95°C</td>
</tr>
<tr>
<td>105°C</td>
<td>115°C</td>
</tr>
</tbody>
</table>

Note:
8. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 11. Environmental Compliance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical ShockResistance</td>
<td>MIL-STD-883F, Method 2002</td>
<td>30000</td>
<td>g</td>
</tr>
<tr>
<td>Mechanical VibrationResistance</td>
<td>MIL-STD-883F, Method 2007</td>
<td>70</td>
<td>g</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>JESD22, Method A104</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Solderability</td>
<td>MIL-STD-883F, Method 2003</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Moisture Sensitivity Level</td>
<td>MSL1 @260°C</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Device Configurations and Pin-outs

Table 12. Device Configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Pin 1</th>
<th>Pin 5</th>
<th>FC Programmable Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCXO</td>
<td>OE/NC</td>
<td>NC</td>
<td>–</td>
</tr>
<tr>
<td>VCTCXO</td>
<td>VC</td>
<td>NC</td>
<td>–</td>
</tr>
<tr>
<td>DCTCXO</td>
<td>OE/NC</td>
<td>A0/NC</td>
<td>Frequency Pull Range, Frequency Pull Value, Output Enable control.</td>
</tr>
</tbody>
</table>

Pin-out Top Views

![Pin-out Top Views](image)

Figure 3. TCXO

Figure 4. VCTCXO

Figure 5. DCTCXO

Table 13. Pin Description

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>I/O</th>
<th>Internal Pull-up/Pull Down Resistor</th>
<th>Function</th>
</tr>
</thead>
</table>
| 1 | OE/NC[11]/VC | OE – Input | 100 kΩ Pull-Up | H[^9]: specified frequency output
L: output is high impedance. Only output driver is disabled.
NC – No Connect | – |
NC – No Connect | – |
| 3 | NC[11] | No Connect | – | H or L or Open: No effect on output frequency or other device functions. |
| 4 | GND | Power | – | Connect to ground |
| 5 | A0 / NC[11] | A0 – Input | 100 kΩ Pull-Up | Device I^2C address when the address selection mode is via the A0 pin.
This pin is NC when the I^2C device address is specified in the ordering code.
A0 Logic Level
0: 110010
1: 1101010
NC – No Connect | – |
| 6 | CLK | Output | – | LVCMOS, or clipped sinewave oscillator output |
| 7 | NC[11] | No Connect | – | H or L or Open: No effect on output frequency or other device functions. |
| 8 | NC[11] | No Connect | – | H or L or Open: No effect on output frequency or other device functions |
| 9 | VDD | Power | – | Connect to power supply[^10] |
NC – No Connect | – |

Notes:

9. In OE mode for noisy environments, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.

10. A 0.1 μF capacitor in parallel with a 10 μF capacitor are required between VDD and GND. The 0.1 μF capacitor is recommended to place close to the device, and place the 10 μF capacitor less than 2 inches away.

11. All NC pins can be left floating and do not need to be soldered down.
Test Circuit Diagrams for LVCMOS and Clipped Sinewave Outputs

Figure 6. LVCMOS Test Circuit (OE Function)

Figure 7. Clipped Sinewave Test Circuit (OE Function) for AC and DC Measurements

Figure 8. LVCMOS Test Circuit (VC Function)

Figure 9. Clipped Sinewave Test Circuit (VC Function) for AC and DC Measurements

Figure 10. LVCMOS Test Circuit (NC Function)

Figure 11. Clipped Sinewave Test Circuit (NC Function) for AC and DC Measurements
Test Circuit Diagrams for LVCMOS and Clipped Sinewave Outputs (continued)

Figure 12. LVCMOS Test Circuit (I²C Control), DCTCXO mode for AC and DC Measurements

Figure 13. Clipped Sinewave Test Circuit (I²C Control), DCTCXO mode for AC and DC Measurements

Figure 14. Clipped Sinewave Test Circuit for Phase Noise Measurements, Applies to All Configurations (NC Function shown for example only)

Note:
12. SDA is open-drain and may require pull-up resistor if not present in I²C test setup.
Waveforms

Figure 15. LVCMOS Waveform Diagram\(^{[13]}\)

Figure 16. Clipped Sinewave Waveform Diagram\(^{[13]}\)

Note:
13. Duty Cycle is computed as Duty Cycle = TH/Period.
Timing Diagrams

Figure 17. Startup Timing

T_start: Time to start from power-off

Figure 18. OE Enable Timing (OE Mode Only)

T_oe: Time to re-enable the clock output

Stability Diagrams

Figure 19. Illustration of hysteresis, where ΔF is max frequency difference between up and down cycles across temperature
Typical Performance Plots

Figure 20. ADEV \[14\]

Figure 21. TDEV (0.1 Hz loop bandwidth) \[14\]

Figure 22. MTIE (0.1 Hz loop bandwidth) \[14\]

Figure 23. Frequency vs Temperature

Figure 24. Freq. vs. Temp. Slope (\(\Delta F/\Delta T\))

Figure 25. VCTCXO frequency pull characteristic

Figure 26. 1-day aging rate after 30 days

Figure 27. Frequency drift after 30 days \[19\]
Typical Performance Plots (continued)

Figure 28. Load sensitivity

Figure 29. VDD sensitivity

Figure 30. Duty Cycle (LVCMOS)

Figure 31. Rise Time (LVCMOS)

Figure 32. IDD TCXO (LVCMOS)

Figure 33. IDD VCTCXO (LVCMOS)

Figure 34. RMS Phase Jitter, DCTCXO, TCXO (LVCMOS)

Figure 35. RMS Period Jitter (LVCMOS)
Typical Performance Plots (continued)

Figure 36. IDD DCTCXO (LVCMOS)

Figure 37. RMS Phase Jitter, VCTCXO (LVCMOS)

Figure 38. DCTCXO frequency pull characteristic

Figure 39. Rise Time (Clipped Sinewave)

Figure 40. IDD TCXO (Clipped Sinewave)

Figure 41. IDD VCTCXO (Clipped Sinewave)

Figure 42. RMS Phase Jitter, DCTCXO, TCXO (Clip Sine)

Figure 43. IDD DCTCXO (Clipped Sinewave)
Typical Performance Plots (continued)

Figure 44. RMS Phase Jitter, VCTCXO (Clipped Sine)

Figure 45. Duty Cycle (Clipped Sinewave)

Note:
14. Measured 24 hours after start up in a temperature chamber with constant temperature.
15. Plotted with respect to the frequency measurement at the end of the 30th day.
Architecture Overview

Based on SiTime’s innovative Elite Platform™, the SiT5358 delivers exceptional dynamic performance, i.e. resilience to environmental stressors such as shock, vibration, and fast temperature transients. Underpinning the Elite platform are SiTime’s unique DualMEMS™ temperature sensing architecture and TurboCompensation™ technologies.

DualMEMS is a noiseless temperature compensation scheme. It consists of two MEMS resonators fabricated on the same die substrate. The TempFlat™ MEMS resonator is designed with a flat frequency characteristic over temperature whereas the temperature sensing resonator is by design sensitive to temperature changes. The ratio of frequencies between these two resonators provides an accurate reading of the resonator temperature with 20 µK resolution.

By placing the two MEMS resonators on the same die, this temperature sensing scheme eliminates any thermal lag and gradients between resonator and temperature sensor, thereby overcoming an inherent weakness of legacy quartz TCXOs.

The DualMEMS temperature sensor drives a state-of-the-art CMOS temperature compensation circuit. The TurboCompensation design, with >100 Hz compensation bandwidth, achieves a dynamic frequency stability that is far superior to any quartz TCXO. The digital temperature compensation enables additional optimization of frequency stability and frequency slope over temperature within any chosen temperature range for a given system design.

The Elite platform also incorporates a high resolution, low noise frequency synthesizer along with the industry standard I²C bus. This unique combination enables system designers to digitally control the output frequency in steps as low as 5 ppt and over a wide range up to ±3200 ppm.

For more information regarding the Elite platform and its benefits please visit:
- SiTime’s breakthroughs section
- TechPaper: DualMEMS Temperature Sensing Technology
- TechPaper: DualMEMS Resonator TDC

Functional Overview

The SiT5358 is designed for maximum flexibility with an array of factory programmable options, enabling system designers to configure this precision device for optimal performance in a given application.

Frequency Stability

The SiT5358 has one factory-trimmed stability grade.

Table 14. Stability Grades vs. Ordering Codes

<table>
<thead>
<tr>
<th>Frequency Stability Over Rated-Temperature Range</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>±50 ppb</td>
<td>R</td>
</tr>
</tbody>
</table>

The frequency stability is ±50 ppb within the rated-stability temperature range (e.g. 0 to 70°C), as illustrated below.

Figure 46. Typical frequency-over-temperature plot including hysteresis (see Figure 19)

The device may be operated outside the rated-stability temperature range as specified in Table 1.

Output Frequency and Format

The SiT5358 can be factory programmed for an output frequency without sacrificing lead time or incurring an upfront customization cost typically associated with custom-frequency quartz TCXOs.

The device supports both LVCMS and clipped sinewave output. Ordering codes for the output format are shown below:

Table 15. Output Formats vs. Ordering Codes

<table>
<thead>
<tr>
<th>Output Format</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVCMS</td>
<td>“L”</td>
</tr>
<tr>
<td>Clipped Sinewave</td>
<td>“C”</td>
</tr>
</tbody>
</table>

Output Frequency Tuning

In addition to the non-pullable TCXO, the SiT5358 can also support output frequency tuning through either an analog control voltage (VCTCXO), or I²C interface (DCTCXO). The I²C interface enables 16 factory programmed pull-range options from ±6.25 ppm to ±3200 ppm. The pull range can also be reprogrammed via I²C to any supported pull-range value. Refer to Device Configuration section for details.
Pin 1 Configuration (OE, VC, or NC)

Pin 1 of the SiT5358 can be factory programmed to support three modes: Output Enable (OE), Voltage Control (VC), or No Connect (NC).

<table>
<thead>
<tr>
<th>Pin 1 Configuration</th>
<th>Operating Mode</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE</td>
<td>TCXO/DCTCXO</td>
<td>Active or High-Z</td>
</tr>
<tr>
<td>NC</td>
<td>TCXO/DCTCXO</td>
<td>Active</td>
</tr>
<tr>
<td>VC</td>
<td>VCTCXO</td>
<td>Active</td>
</tr>
</tbody>
</table>

When pin 1 is configured as OE pin, the device output is guaranteed to operate in one of the following two states:

- Clock output with the frequency specified in the part number when Pin 1 is pulled to logic high
- Hi-Z mode with weak pull down when pin 1 is pulled to logic low.

When pin 1 is configured as NC, the device is guaranteed to output the frequency specified in the part number at all times, regardless of the logic level on pin 1.

In the VCTCXO configuration, the user can fine-tune the output frequency from the nominal frequency specified in the part number by varying the pin 1 voltage. The guaranteed allowable variation of the output frequency is specified as pull range. A VCTCXO part number must contain a valid pull-range ordering code.

Device Configurations

The SiT5358 supports 3 device configurations – TCXO, VCTCXO, and DCTCXO. The TCXO and VCTCXO options are directly compatible with the quartz TCXO and VCTCXO. The DCTCXO configuration provides performance enhancement by eliminating VCTCXO’s sensitivity to control voltage noise with an I2C digital interface for frequency tuning.

TCXO Configuration

The TCXO configuration generates a fixed frequency output, as shown in Figure 47. The frequency is specified by the user in the frequency field of the device ordering code and then factory programmed. Other factory programmable options include supply voltage, output types (LVCMOS or clipped sinewave), and pin 1 functionality (OE or NC).

Refer to the Ordering Information section at the end of the datasheet for a list of all ordering options.
VCTCXO Configuration

A VCTCXO, shown in Figure 48, is a frequency control device whose output frequency is an approximately linear function of control voltage applied to the voltage control pin. VCTCXOs have a number of use cases including the VCO portion of a jitter attenuation/jitter cleaner PLL Loop.

The SiT5358 achieves a 10x better pull range linearity of <0.5% via a high-resolution fractional PLL and low-noise precision analog-to-digital converter. By contrast, quartz-based VCTCXOs change output frequency by varying the capacitive load of a crystal resonator using varactor diodes, which results in linearity of 5% to 105%.

Note that the output frequency of the VCTCXO is proportional to the analog control voltage applied to pin 1. Because this control signal is analog and directly controls the output frequency, care must be taken to minimize noise on this pin.

The nominal output frequency is factory programmed per the customer’s request to 6 digits of precision and is defined as the output frequency when the control voltage equals Vdd/2. The maximum output frequency variation from this nominal value is set by the pull range, which is also factory programmed to the customer’s desired value and specified by the ordering code. The Ordering Information section shows all ordering options and associated ordering codes.

Refer to VCTCXO-Specific Design Considerations for more information on critical VCTCXO parameters including pull range linearity, absolute pull range, control voltage bandwidth, and Kv.
DCTCXO Configuration

The SiT5358 offers digital control of the output frequency, as shown in Figure 49. The output frequency is controlled by writing frequency control words over the I²C interface.

There are several advantages of DCTCXOs relative to VCTCXOs:

1) Frequency control resolution as low as 5 ppt. This high resolution minimizes accumulated time error in synchronization applications.

2) Lower system cost – A VCTCXO may need a Digital to Analog Converter (DAC) to drive the control voltage input. In a DCTCXO, the frequency control is achieved digitally by register writes to the control registers via I²C, thereby eliminating the need for a DAC.

3) Better noise immunity – The analog signal used to drive the voltage control pin of a VCTCXO can be sensitive to noise, and the trace over which the signal is routed can be susceptible to noise coupling from the system. The DCTCXO does not suffer from analog noise coupling since the frequency control is performed digitally through I²C.

4) No frequency-pull non-linearity – The frequency pulling is achieved via fractional feedback divider of the PLL, eliminating any pull non-linearity concerns typical of quartz-based VCTCXOs. This improves dynamic performance in closed-loop applications.

5) Programmable wide pull range – The DCTCXO pulling mechanism is via the fractional feedback divider and is therefore not constrained by resonator pullability as in quartz-based solutions. The SiT5358 offers 16 frequency pull-range options from ±6.25 ppm to ±3200 ppm, providing system designers great flexibility.

Refer to DCTCXO-Specific Design Considerations for more information on critical DCTCXO parameters including pull range, absolute pull range, frequency output, and I²C control registers.

Figure 49. Block Diagram
VCTCXO-Specific Design Considerations

Linearity

In any VCTCXO, there will be some deviation of the frequency-voltage (FV) characteristic from an ideal straight line. Linearity is the ratio of this maximum deviation to the total pull range, expressed as a percentage. Figure 50 below shows the typical pull linearity of a SiTime VCTCXO. The linearity is excellent (1% maximum) relative to most quartz offerings because the frequency pulling is achieved with a PLL rather than varactor diodes.

![Figure 50. Typical SiTime VCTCXO Linearity](image-url)

Control Voltage Bandwidth

Control voltage bandwidth, sometimes called “modulation rate” or “modulation bandwidth”, indicates how fast a VCO can respond to voltage changes at its input. The ratio of the output frequency variation to the input voltage variation, previously denoted by Kv, has a low-pass characteristic in most VCTCXOs. The control voltage bandwidth equals the modulating frequency where the output frequency deviation equals 0.707 (e.g. -3 dB) of its DC value, for DC inputs swept in the same voltage range.

For example, a part with a ±6.25 ppm pull range and a 0-3V control voltage can be regarded as having an average KV of 4.17 ppm/V (12.5 ppm/3V = 4.17 ppm/V). Applying an input of 1.5 V DC ± 0.5 V (1.0 V to 2.0 V) causes an output frequency change of 4.17 ppm (±2.08 ppm). If the control voltage bandwidth is specified as 10 kHz, the peak-to-peak value of the output frequency change will be reduced to 4.33 ppm/√2 or 2.95 ppm, as the frequency of the control voltage change is increased to 10 kHz.

![Figure 51. Typical SiTime KV Variation](image-url)

FV Characteristic Slope Kv

The slope of the FV characteristic is a critical design parameter in many low bandwidth PLL applications. The slope is the derivative of the FV characteristic — the deviation of frequency divided by the control voltage change needed to produce that frequency deviation, over a small voltage span, as shown below:

\[K_v = \frac{\Delta f_{\text{out}}}{\Delta V_{\text{in}}} \]

It is typically expressed in kHz/Volt, MHz/Volt, ppm/Volt, or similar units. This slope is usually called “Kv” based on terminology used in PLL designs.

The extreme linear characteristic of the SiTime SiT5358 VCTCXO family means that there is very little Kv variation across the whole input voltage range (typically <1%), significantly reducing the design burden on the PLL designer. Figure 51 below illustrates the typical Kv variation.
Pull Range, Absolute Pull Range

Pull range (PR) is the amount of frequency deviation that will result from changing the control voltage over its maximum range under nominal conditions.

Absolute pull range (APR) is the guaranteed controllable frequency range over all environmental and aging conditions. Effectively, it is the amount of pull range remaining after taking into account frequency stability, tolerances over variables such as temperature, power supply voltage, and aging, i.e.:

$$\text{APR} = \text{PR} - F_{\text{stability}} - F_{\text{aging}}$$

where $F_{\text{stability}}$ is the device frequency stability due to initial tolerance and variations on temperature, power supply, and load.

Figure 52 shows a typical SiTime VCTCXO FV characteristic. The FV characteristic varies with conditions, so that the frequency output at a given input voltage can vary by as much as the specified frequency stability of the VCTCXO. For such VCTCXOs, the frequency stability and APR are independent of each other. This allows very wide range of pull options without compromising frequency stability.

Table 17. VCTCXO Pull Range, APR Options

Typical unless specified otherwise. Pull range (PR) is ±6.25 ppm.

<table>
<thead>
<tr>
<th>Pull Range Ordering Code</th>
<th>Device Option(s)</th>
<th>APR ppm 0 to 70°C</th>
<th>APR ppm -40 to 105°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>VCTCXO</td>
<td>±5.31</td>
<td>±5.26</td>
</tr>
</tbody>
</table>

Notes:
16. APR includes initial tolerance, frequency stability vs. temperature, and the indicated 20-year aging.
DCTCXO-Specific Design Considerations

Pull Range and Absolute Pull Range

Pull range and absolute pull range are described in the previous section. Table 18 below shows the pull range and corresponding APR values for each of the frequency vs. temperature ordering options.

Table 18. APR Options[17]

<table>
<thead>
<tr>
<th>Pull Range Ordering Code</th>
<th>Pull Range ppm</th>
<th>APR ppm 0 to 70°C ±0.54 ppm 20-year aging</th>
<th>APR ppm -40 to 105°C ±0.54 ppm 20-year aging</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>±6.25</td>
<td>±5.31</td>
<td>±5.26</td>
</tr>
<tr>
<td>R</td>
<td>±10</td>
<td>±9.06</td>
<td>±9.01</td>
</tr>
<tr>
<td>Q</td>
<td>±12.5</td>
<td>±11.56</td>
<td>±11.51</td>
</tr>
<tr>
<td>M</td>
<td>±25</td>
<td>±24.06</td>
<td>±24.01</td>
</tr>
<tr>
<td>B</td>
<td>±50</td>
<td>±49.06</td>
<td>±49.01</td>
</tr>
<tr>
<td>C</td>
<td>±80</td>
<td>±79.06</td>
<td>±79.01</td>
</tr>
<tr>
<td>E</td>
<td>±100</td>
<td>±99.06</td>
<td>±99.01</td>
</tr>
<tr>
<td>F</td>
<td>±125</td>
<td>±124.06</td>
<td>±124.01</td>
</tr>
<tr>
<td>G</td>
<td>±150</td>
<td>±149.06</td>
<td>±149.01</td>
</tr>
<tr>
<td>H</td>
<td>±200</td>
<td>±199.06</td>
<td>±199.01</td>
</tr>
<tr>
<td>X</td>
<td>±400</td>
<td>±399.06</td>
<td>±399.01</td>
</tr>
<tr>
<td>L</td>
<td>±600</td>
<td>±599.06</td>
<td>±599.01</td>
</tr>
<tr>
<td>Y</td>
<td>±800</td>
<td>±799.06</td>
<td>±799.01</td>
</tr>
<tr>
<td>S</td>
<td>±1200</td>
<td>±1199.06</td>
<td>±1199.01</td>
</tr>
<tr>
<td>Z</td>
<td>±1600</td>
<td>±1599.06</td>
<td>±1599.01</td>
</tr>
<tr>
<td>U</td>
<td>±3200</td>
<td>±3199.06</td>
<td>±3199.01</td>
</tr>
</tbody>
</table>

Notes:
17. APR includes initial tolerance, frequency stability vs. temperature, and the indicated 20-year aging.
Output Frequency

The device powers up at the nominal operating frequency and pull range specified by the ordering code. After power-up both pull range and output frequency can be controlled via I\(^2\)C writes to the respective control registers. The maximum output frequency change is constrained by the pull range limits.

The pull range is specified by the value loaded in the digital pull-range control register. The 16 pull range choices are specified in the control register and range from ±6.25 ppm to ±3200 ppm.

Table 19 below shows the frequency resolution versus pull range programmed value

<table>
<thead>
<tr>
<th>Programmed Pull Range</th>
<th>Frequency Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>±6.25 ppm</td>
<td>5x10(^{-12})</td>
</tr>
<tr>
<td>±10 ppm</td>
<td>5x10(^{-12})</td>
</tr>
<tr>
<td>±12.5 ppm</td>
<td>5x10(^{-12})</td>
</tr>
<tr>
<td>±25 ppm</td>
<td>5x10(^{-12})</td>
</tr>
<tr>
<td>±50 ppm</td>
<td>5x10(^{-12})</td>
</tr>
<tr>
<td>±80 ppm</td>
<td>5x10(^{-12})</td>
</tr>
<tr>
<td>±100 ppm</td>
<td>5x10(^{-12})</td>
</tr>
<tr>
<td>±120 ppm</td>
<td>5x10(^{-12})</td>
</tr>
<tr>
<td>±150 ppm</td>
<td>5x10(^{-12})</td>
</tr>
<tr>
<td>±200 ppm</td>
<td>5x10(^{-12})</td>
</tr>
<tr>
<td>±400 ppm</td>
<td>1x10(^{-11})</td>
</tr>
<tr>
<td>±600 ppm</td>
<td>1.4x10(^{-11})</td>
</tr>
<tr>
<td>±800 ppm</td>
<td>2.1x10(^{-11})</td>
</tr>
<tr>
<td>±1200 ppm</td>
<td>3.2x10(^{-11})</td>
</tr>
<tr>
<td>±1600 ppm</td>
<td>4.7x10(^{-11})</td>
</tr>
<tr>
<td>±3200 ppm</td>
<td>9.4x10(^{-11})</td>
</tr>
</tbody>
</table>

The ppm frequency offset is specified by the 26 bit DCXO frequency control register in two’s complement format as described in the I\(^2\)C Register Descriptions. The power up default value is 000000000000000000000000b which sets the output frequency at its nominal value (0 ppm). To change the output frequency, a frequency control word is written to 0x00[15:0] (Least Significant Word) and 0x01[9:0] (Most Significant Word). The LSW value should be written first followed by the MSW value; the frequency change is initiated after the MSW value is written.
Figure 53 shows how the two’s complement signed value of the frequency control word sets the output frequency within the ppm pull range set by 0x02[3:0]. This example shows use of the ±200 ppm pull range. Therefore, to set the desired output frequency, one just needs to calculate the fraction of full scale value ppm, convert to two’s complement binary, and then write these values to the frequency control registers.

The following formula generates the control word value:

\[
\text{Control word value} = \text{RND}(2^{25}-1 \times \text{ppm shift from nominal/pull range})
\]

where RND is the rounding function which rounds the number to the nearest whole number.

Example 1:

- Default Output Frequency = 19.2 MHz
- Desired Output Frequency = 19.201728 MHz (+90 ppm)

\[2^{25}-1 \] corresponds to +200 ppm, and the fractional value required for +90 ppm can be calculated as follows.

\[
90 \text{ ppm} / 200 \text{ ppm} \times (2^{25}-1) = 15,099,493.95.
\]

Rounding to the nearest whole number yields 15,099,494 and converting to two’s complement gives a binary value of 111001100110011001100110, or E66666 in hex.

Example 2:

- Default Output Frequency = 10 MHz
- Desired Output Frequency = 9.9995 MHz (-50 ppm)

Following the formula shown above,

\[(-50 \text{ ppm} / 200 \text{ ppm}) \times (2^{25}) = -8,388,608.
\]

Converting this to two’s complement binary results in 11100000000000000000000000000000, or 3800000 in hex.

To summarize, the procedure for calculating the frequency control word associated with a given ppm offset is as follows:

1) Calculate the fraction of the half-pull range needed. For example, if the total pull range is set for ±100 ppm and a +20 ppm shift from the nominal frequency is needed, this fraction is 20 ppm/100 ppm = 0.2

2) Multiply this fraction by the full-half scale word value, \(2^{25}-1 = 33,554,431\), round to the nearest whole number, and convert the result to two’s complement binary. Following the +20 ppm example, this value is \(0.2 \times 33,554,431 = 6,710,866.2\) and rounded to 6,710,868.

3) Write the two’s complement binary value starting with the Least Significant Word (LSW) 0x00[16:0], followed by the Most Significant Word (MSW), 0x01[9:0]. If the user desires that the output remains enabled while changing the frequency, a 1 must also be written to the OE control bit 0x01[10] if the device has software OE Control Enabled.

It is important to note that the maximum Digital Control update rate is 38 kHz regardless of I²C bus speed.
I2C Control Registers

The SiT5358 enables control of frequency pull range, frequency pull value, and Output Enable via I2C writes to the control registers. Table 20 below shows the register map summary, and detailed register descriptions follow.

Table 20. Register Map Summary

<table>
<thead>
<tr>
<th>Address</th>
<th>Bits</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>[15:0]</td>
<td>RW</td>
<td>DIGITAL FREQUENCY CONTROL LEAST SIGNIFICANT WORD (LSW)</td>
</tr>
<tr>
<td>0x01</td>
<td>[15:11]</td>
<td>R</td>
<td>NOT USED</td>
</tr>
<tr>
<td></td>
<td>[10]</td>
<td>RW</td>
<td>OE Control. This bit is only active if the output enable function is under software control. If the device is configured for hardware control using the OE pin, writing to this bit has no effect.</td>
</tr>
<tr>
<td></td>
<td>[9:0]</td>
<td>RW</td>
<td>DIGITAL FREQUENCY CONTROL MOST SIGNIFICANT WORD (MSW)</td>
</tr>
<tr>
<td>0x02</td>
<td>[15:4]</td>
<td>R</td>
<td>NOT USED</td>
</tr>
<tr>
<td></td>
<td>[3:0]</td>
<td>RW</td>
<td>DIGITAL PULL RANGE CONTROL</td>
</tr>
</tbody>
</table>

Register Descriptions

Register Address: 0x00. Digital Frequency Control Least Significant Word (LSW)

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Name
DIGITAL FREQUENCY CONTROL LEAST SIGNIFICANT WORD (LSW)[15:0]

Bits

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:0</td>
<td>DIGITAL FREQUENCY CONTROL LEAST SIGNIFICANT WORD</td>
<td>RW</td>
<td></td>
</tr>
</tbody>
</table>

Bits [15:0] are the lower 16 bits of the 26 bit FrequencyControlWord and are the Least Significant Word (LSW). The upper 10 bits are in register 0x01[9:0] and are the Most Significant Word (MSW). The lower 16 bits together with the upper 10 bits specify a 26-bit frequency control word.

This power-up default values of all 26 bits are 0 which sets the output frequency at its nominal value. After power-up, the system can write to these two registers to pull the frequency across the pull range. The register values are two’s complement to support positive and negative control values. The LSW value should be written before the MSW value because the frequency change is initiated when the new values are loaded into the MSW. More details and examples are discussed in the previous section.
Register Address: 0x01. OE Control, Digital Frequency Control Most Significant Word (MSW)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:11</td>
<td>NOT USED</td>
<td>R</td>
<td>Bits [15:10] are read only and return all 0’s when read. Writing to these bits has no effect.</td>
</tr>
<tr>
<td>10</td>
<td>OE Control</td>
<td>RW</td>
<td>Output Enable Software Control. Allows the user to enable and disable the output driver via I2C. 0 = Output Disabled (Default) 1 = Output Enabled This bit is only active if the Output Enable function is under software control. If the device is configured for hardware control using the OE pin, writing to this bit has no effect.</td>
</tr>
<tr>
<td>9:0</td>
<td>DIGITAL FREQUENCY CONTROL MOST SIGNIFICANT WORD (MSW)</td>
<td>RW</td>
<td>Bits [9:0] are the upper 10 bits of the 26 bit FrequencyControlWord and are the Most Significant Word (MSW). The lower 16 bits are in register 0x00[15:0] and are the Least Significant Word (LSW). These lower 16 bits together with the upper 10 bits specify a 26-bit frequency control word. This power-up default values of all 26 bits are 0 which sets the output frequency at its nominal value. After power-up, the system can write to these two registers to pull the frequency across the pull range. The register values are two’s complement to support positive and negative control values. The LSW value should be written before the MSW value because the frequency change is initiated when the new values are loaded into the MSW. More details and examples are discussed in the previous section.</td>
</tr>
</tbody>
</table>
Register Address: 0x02. DIGITAL PULL RANGE CONTROL[18]

| Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Access | R | R | R | R | R | R | R | R | R | R | RW | RW | RW | RW | RW |
| Default | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | X | X | X | X | X |
| Name | NONE | DIGITAL PULL RANGE CONTROL |

Notes:
18. Default values are factory set but can be over-written after power-up.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Access</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:4</td>
<td>NONE</td>
<td>R</td>
<td>Bits [15:4] are read only and return all 0's when read. Writing to these bits has no effect.</td>
</tr>
<tr>
<td>3:0</td>
<td>DIGITAL PULL RANGE CONTROL</td>
<td>RW</td>
<td>Sets the digital pull range of the DCXO. The table below shows the available pull range values and associated bit settings. The default value is factory programmed.</td>
</tr>
</tbody>
</table>

Bit

<table>
<thead>
<tr>
<th>3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0: ±6.25 ppm</td>
</tr>
<tr>
<td>0 0 0 1: ±10 ppm</td>
</tr>
<tr>
<td>0 0 1 0: ±12.5 ppm</td>
</tr>
<tr>
<td>0 0 1 1: ±25 ppm</td>
</tr>
<tr>
<td>0 1 0 0: ±50 ppm</td>
</tr>
<tr>
<td>0 1 0 1: ±80 ppm</td>
</tr>
<tr>
<td>0 1 1 0: ±100 ppm</td>
</tr>
<tr>
<td>0 1 1 1: ±125 ppm</td>
</tr>
<tr>
<td>1 0 0 0: ±150 ppm</td>
</tr>
<tr>
<td>1 0 0 1: ±200 ppm</td>
</tr>
<tr>
<td>1 0 1 0: ±400 ppm</td>
</tr>
<tr>
<td>1 0 1 1: ±600 ppm</td>
</tr>
<tr>
<td>1 1 0 0: ±800 ppm</td>
</tr>
<tr>
<td>1 1 0 1: ±1200 ppm</td>
</tr>
<tr>
<td>1 1 1 0: ±1600 ppm</td>
</tr>
<tr>
<td>1 1 1 1: ±3200 ppm</td>
</tr>
</tbody>
</table>
Serial Interface Configuration Description

The SiT5358 includes an I²C interface to access registers that control the DCTCXO frequency pull range, and frequency pull value. The SiT5358 I²C slave-only interface supports clock speeds up to 1 Mbit/s. The SiT5358 I²C module is based on the I²C specification, UM1024 (Rev.6 April 4, 2014 of NXP Semiconductor).

Serial Signal Format

The SDA line must be stable during the high period of the SCL. SDA transitions are allowed only during SCL low level for data communication. Only one transition is allowed during the low SCL state to communicate one bit of data. Figure 54 shows the detailed timing diagram.
Parallel Signal Format

Every data byte is 8 bits long. The number of bytes that can be transmitted per transfer is unrestricted. Data is transferred with the MSB (Most Significant Bit) first. The detailed data transfer format is shown in Figure 57 below.

The acknowledge bit must occur after every byte transfer and it allows the receiver to signal the transmitter that the byte was successfully received and another byte may be sent. The acknowledge signal is defined as follows: the transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line low and it remains stable low during the high period of this clock pulse. Setup and hold times must also be taken into account. When SDA remains high during this ninth clock pulse, this is defined as the Not-Acknowledge signal (NACK). The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer. The only condition that leads to the generation of NACK from the SiT5358 is when the transmitted address does not match the slave address. When the master is reading data from the SiT5358, the SiT5358 expects the ACK from the master at the end of received data, so that the slave releases the SDA line and the master can generate the STOP or repeated START. If there is a NACK signal at the end of the data, then the SiT5358 tries to send the next data. If the first bit of the next data is “0”, then the SiT5358 holds the SDA line to “0”, thereby blocking the master from generating a STOP/(re)START signal.

Parallel Data Format

This I²C slave module supports 7-bit device addressing format. The 8th bit is a read/write bit and “1” indicates a read transaction and a “0” indicates a write transaction. The register addresses are 8-bits long with an address range of 0 to 255 (00h to FFh). Auto address incrementing is supported which allows data to be transferred to contiguous addresses without the need to write each address beyond the first address. Since the maximum register address value is 255, the address will roll from 255 back to 0 when auto address incrementing is used. Obviously, auto address incrementing should only be used for writing to contiguous addresses. The data format is 16-bit (two bytes) with the most significant byte being transferred first. For a read operation, the starting register address must be written first. If that is omitted, reading will start from the last address in the auto-increment counter of the device, which has a startup default of 0x00.
Figure 58. Parallel data byte format, read operation

Figure 59 below shows the I²C sequence for writing the 4-byte control word using auto address incrementing.

Digital Frequency Control – Least Significant Word (LSW) [15:0]

<table>
<thead>
<tr>
<th>St</th>
<th>D_Address[6:0]</th>
<th>W</th>
<th>A</th>
<th>R_Address[7:0]=00</th>
<th>A</th>
<th>LSW[15:8]</th>
<th>A</th>
<th>LSW[7:0]</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0x00[15:8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x00[7:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Digital Frequency Control – Most Significant Word (MSW) [9:0]

<table>
<thead>
<tr>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>OE</th>
<th>9</th>
<th>8</th>
<th>A</th>
<th>MSW[7:0]</th>
<th>A</th>
<th>Sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01[15:8]</td>
<td>0x01[7:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output

Frequency

\[f_0\]

\[T_{fdelay} \]

\[T_{settle} \]

\[f_0 + f_1 \pm 0.5\% \]

Table 21. DCTCXO Delay and Settling Time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Change Delay</td>
<td>(T_{fdelay})</td>
<td>–</td>
<td>103</td>
<td>140</td>
<td>(\mu s)</td>
<td>Time from end of 0x01 reg MSW to start of frequency pull, as shown in Figure 59</td>
</tr>
<tr>
<td>Frequency Settling Time</td>
<td>(T_{settle})</td>
<td>–</td>
<td>16.5</td>
<td>20</td>
<td>(\mu s)</td>
<td>Time to settle to 0.5% of frequency offset, as shown in Figure 59</td>
</tr>
</tbody>
</table>
I²C Timing Specification

The below timing diagram and table illustrate the timing relationships for both master and slave.

![I²C Timing Diagram](image)

Figure 60. I²C Timing Diagram

Table 22. I²C Timing Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Speed Mode</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{SETUP}</td>
<td>FM+ (1 MHz)</td>
<td>> 50</td>
<td>nsec</td>
</tr>
<tr>
<td></td>
<td>FM (400 KHz)</td>
<td>> 100</td>
<td>nsec</td>
</tr>
<tr>
<td></td>
<td>SM (100 KHz)</td>
<td>> 250</td>
<td>nsec</td>
</tr>
<tr>
<td>t_{HOLD}</td>
<td>FM+ (1 MHz)</td>
<td>> 0</td>
<td>nsec</td>
</tr>
<tr>
<td></td>
<td>FM (400 KHz)</td>
<td>> 0</td>
<td>nsec</td>
</tr>
<tr>
<td></td>
<td>SM (100 KHz)</td>
<td>> 0</td>
<td>nsec</td>
</tr>
<tr>
<td>$t_{\text{VD:AWK}}$</td>
<td>FM+</td>
<td>> 450</td>
<td>nsec</td>
</tr>
<tr>
<td></td>
<td>FM (400 KHz)</td>
<td>> 900</td>
<td>nsec</td>
</tr>
<tr>
<td></td>
<td>SM (100 KHz)</td>
<td>> 3450</td>
<td>nsec</td>
</tr>
<tr>
<td>$t_{\text{VD:DAT}}$</td>
<td>NA (s-awk + s-data)/(m-awk/s-data)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$v_{\text{IL}} = 0.3v_{\text{DD}}$
$v_{\text{IH}} = 0.7v_{\text{DD}}$
I2C Device Address Modes

There are two I2C address modes:

1) **Factory Programmed Mode.** The lower 4 bits of the 7-bit device address are set by ordering code as shown in Table 23 below. There are 16 factory programmed addresses available. In this mode, pin 5 is NC and the A0 I2C address pin control function is not available.

2) **A0 Pin Control.** This mode allows the user to select between two I2C Device addresses as shown in Table 24.

Table 23. Factory Programmed I2C Address Control[19]

<table>
<thead>
<tr>
<th>I2C Address Ordering Code</th>
<th>Device I2C Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1100000</td>
</tr>
<tr>
<td>1</td>
<td>1100001</td>
</tr>
<tr>
<td>2</td>
<td>1100010</td>
</tr>
<tr>
<td>3</td>
<td>1100011</td>
</tr>
<tr>
<td>4</td>
<td>1100100</td>
</tr>
<tr>
<td>5</td>
<td>1100101</td>
</tr>
<tr>
<td>6</td>
<td>1100110</td>
</tr>
<tr>
<td>7</td>
<td>1100111</td>
</tr>
<tr>
<td>8</td>
<td>1101000</td>
</tr>
<tr>
<td>9</td>
<td>1101001</td>
</tr>
<tr>
<td>A</td>
<td>1101010</td>
</tr>
<tr>
<td>B</td>
<td>1101011</td>
</tr>
<tr>
<td>C</td>
<td>1101100</td>
</tr>
<tr>
<td>D</td>
<td>1101101</td>
</tr>
<tr>
<td>E</td>
<td>1101110</td>
</tr>
<tr>
<td>F</td>
<td>1101111</td>
</tr>
</tbody>
</table>

Notes:
19. Table 23 is only valid for the DCTCXO device option which supports I2C Control.

Table 24. Pin Selectable I2C Address Control[20]

<table>
<thead>
<tr>
<th>A0 Pin 5</th>
<th>I2C Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1100010</td>
</tr>
<tr>
<td>1</td>
<td>1101010</td>
</tr>
</tbody>
</table>

Notes:
20. Table 24 is only valid for the DCTCXO device option which supports I2C control and A0 Device Address Control Pin.
Schematic Example

Use 1 kΩ resistor to tie SCL and SDA lines to VDD if I2C interface is used.

Use 1 kΩ resistor to tie FSI line to VDD or GND if I2C address is set by address pin.

Figure 61. DCTCXO schematic example
Dimensions and Patterns

Package Size – Dimensions (Unit: mm)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL THICKNESS</td>
<td>A</td>
<td>0.940</td>
<td>0.950</td>
</tr>
<tr>
<td>BODY SIZE</td>
<td>X</td>
<td>4.850</td>
<td>5.000</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>3.050</td>
<td>3.200</td>
</tr>
<tr>
<td>LEAD PITCH</td>
<td>e1</td>
<td>1.320</td>
<td>1.360</td>
</tr>
<tr>
<td></td>
<td>e2</td>
<td>0.950</td>
<td>1.000</td>
</tr>
<tr>
<td>LEAD LENGTH</td>
<td>L</td>
<td>0.940</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>W1</td>
<td>0.470</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>W2</td>
<td>0.470</td>
<td>0.500</td>
</tr>
</tbody>
</table>

NOTES:
2. All dimensions are in millimeters.

Recommended Land Pattern (Unit: mm)

Solder Print Layout

10L Ceramic
5.0x3.2x0.95
2017/06/20
Layout Guidelines

- The SiT5358 uses internal regulators to minimize the impact of power supply noise. For further reduction of noise, it is essential to use two bypass capacitors (0.1 μF and 10 μF). Place the 0.1 μF capacitor as close to the VDD pin as possible, typically within 1 mm to 2 mm. Place the 10 μF capacitor within 2 inches of the device VDD and VSS pins.

- It is also recommended to connect all NC pins to the ground plane and place multiple vias under the GND pin for maximum heat dissipation.

- For additional layout recommendations, refer to the Best Design Layout Practices.

Manufacturing Guidelines

The SiT5358 Super-TCXOs are precision timing devices. Proper PCB solder and cleaning processes must be followed to ensure best performance and long-term reliability.

- **No Ultrasonic or Megasonic Cleaning:** Do not subject the SiT5358 to an ultrasonic or megasonic cleaning environment. Otherwise, permanent damage or long-term reliability issues to the device may result.

- **No external cover.** Unlike legacy quartz TCXOs, the SiT5358 is engineered to operate reliably, without performance degradation in the presence of ambient disturbers such as airflow and sudden temperature changes. Therefore, the use of an external cover typically required by quartz TCXOs is not needed.

- **Reflow profile:** For mounting these devices to the PCB, IPC/JEDEC J-STD-020 compliant reflow profile must be used. Device performance is not guaranteed if soldered manually or with a non-compliant reflow profile.

- **PCB cleaning:** After the surface mount (SMT)/reflow process, solder flux residues may be present on the PCB and around the pads of the device. Excess residual solder flux may lead to problems such as pad corrosion, elevated leakage currents, increased frequency aging, or other performance degradation. For optimal device performance and long-term reliability, thorough cleaning to remove all the residual flux and drying of the PCB is required as shortly after the reflow process as possible. Water soluble flux is recommended. In addition, it is highly recommended to avoid the use of any “no clean” flux. However, if the reflow process necessitates the use of “no clean” flux, then utmost care should be taken to remove all residual flux between SiTime device and the PCB. Note that ultrasonic PCB cleaning should not be used with SiTime oscillators.

- For additional manufacturing guidelines and marking/tape-reel instructions, refer to SiTime Manufacturing Notes.
Additional Information

Table 25. Additional Information

<table>
<thead>
<tr>
<th>Document</th>
<th>Description</th>
<th>Download Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECCN #: EAR99</td>
<td>Five character designation used on the commerce Control List (CCL) to identify dual use items for export control purposes.</td>
<td>—</td>
</tr>
<tr>
<td>HTS Classification Code: 8542.39.0000</td>
<td>A Harmonized Tariff Schedule (HTS) code developed by the World Customs Organization to classify/define internationally traded goods.</td>
<td>—</td>
</tr>
<tr>
<td>Demo Board</td>
<td>SiT6702DB Demo Board User Manual</td>
<td>https://www.sitime.com/support/user-guides</td>
</tr>
<tr>
<td>Time Machine II</td>
<td>MEMS oscillator programmer</td>
<td>http://www.sitime.com/support/time-machine-oscillator-programmer</td>
</tr>
<tr>
<td>Time Master Web-based Configurator</td>
<td>Web tool to establish proper programming</td>
<td>http://www.sitime.com/time-master-web-based-configurator</td>
</tr>
<tr>
<td>Manufacturing Notes</td>
<td>Tape & Reel dimension, reflow profile and other manufacturing related info</td>
<td>https://www.sitime.com/support/resource-library?filter=531</td>
</tr>
<tr>
<td>Qualification Reports</td>
<td>RoHS report, reliability reports, composition reports</td>
<td>http://www.sitime.com/support/quality-and-reliability</td>
</tr>
<tr>
<td>Performance Reports</td>
<td>Additional performance data such as phase noise, current consumption and jitter for selected frequencies</td>
<td>http://www.sitime.com/support/performance-measurement-report</td>
</tr>
<tr>
<td>Termination Techniques</td>
<td>Termination design recommendations</td>
<td>http://www.sitime.com/support/application-notes</td>
</tr>
<tr>
<td>Layout Techniques</td>
<td>Layout recommendations</td>
<td>http://www.sitime.com/support/application-notes</td>
</tr>
</tbody>
</table>
Revision History

Table 26. Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Release Date</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>05/10/2016</td>
<td>First release, advanced information</td>
</tr>
<tr>
<td>0.15</td>
<td>08/04/2016</td>
<td>Replaced QFN package with SOIC-8 package
 Added 10 μF bypass cap requirement
 Updated test circuits to reflect both new bypass cap requirement and SOIC-8 package
 Update Table 1 (Electrical Characteristics)</td>
</tr>
<tr>
<td>0.16</td>
<td>09/12/2016</td>
<td>Updated test circuit diagrams</td>
</tr>
<tr>
<td>0.2</td>
<td>09/21/2016</td>
<td>Revised Table 1 (Electrical Characteristics)</td>
</tr>
<tr>
<td>0.4</td>
<td>12/19/2016</td>
<td>Added DCTCXO mode
 Added I2C information
 Added I2C</td>
</tr>
<tr>
<td>0.5</td>
<td>07/21/2017</td>
<td>Added 5.0 mm x 3.2 mm package information
 Updated Table 1 (Electrical Characteristics)</td>
</tr>
<tr>
<td>0.51</td>
<td>08/20/2017</td>
<td>Changed to preliminary
 Updated 5.0 mm x 3.2 mm package dimensions
 Updated test circuits
 Updated Table 1 (Electrical Characteristics)
 Updated part ordering info
 Misc. corrections</td>
</tr>
<tr>
<td>0.52</td>
<td>11/24/2017</td>
<td>Updated the Thermal Characteristics table
 Added more on Manufacturing Guideline section</td>
</tr>
<tr>
<td>0.55</td>
<td>02/05/2018</td>
<td>Added View labels to Package Drawings
 Updated the frequency vs. output type changes to 60 MHz
 Updated links and notes</td>
</tr>
<tr>
<td>0.60</td>
<td>03/01/2018</td>
<td>Updated Ordering Information</td>
</tr>
<tr>
<td>0.9</td>
<td>07/06/2018</td>
<td>Updated Electrical Characteristics tables
 Added Performance Plots
 Improved readability
 Fixed bad hyperlinks</td>
</tr>
<tr>
<td>0.91</td>
<td>08/03/2018</td>
<td>Added test circuit for clipped sinewave phase noise
 Updated package outline drawing
 Revised phase noise specifications
 Updated conditions for one day and one year aging specs
 Various formatting updates</td>
</tr>
<tr>
<td>0.92</td>
<td>08/06/2018</td>
<td>Formatting updates</td>
</tr>
<tr>
<td>0.93</td>
<td>12/17/2019</td>
<td>Formatting updates
 Corrected typos in package drawing dimensions
 Added nominal value for LVCMOS output impedance
 Increased Mechanical Shock Resistance to 30000g
 Added “X” order code for 250u Tape and Reel
 Updated Manufacturing Guidelines to recommend water soluble flux
 Modified I2C bus frequency specification
 Corrected typos for write/read I2C polarity
 Clarified PCB cleaning instructions
 Added link for SiT6702DB
 Added ECCN and HTS codes
 Reduced supply and load sensitivities
 Added note to Theta JA
 Changed conditions for 24-hour holdover stability spec
 Added Allan deviation spec
 Added absolute maximum limits for input voltage
 Updated DCTCXO Delay and Settling Time table
 Added ±100 ppb stability over -40 to 105°C
 Updated typical performance plot for load sensitivity
 Updated jitter and phase noise specifications
 Updated Frequency Stability specifications in Table 1, added support for wider temperature range
 Added Figure to Functional Overview section clarifying frequency stability over temperature
 Updated pull range specifications</td>
</tr>
<tr>
<td>0.94</td>
<td>03/04/2020</td>
<td>Added 5 and 10 year aging specs
 Added max and min aging specs for 1 and 20 years, and changed ambient temperature to 85°C
 Slightly reduced minimum pull range specs and updated Tables 17 and 18
 Added max and min hysteresis specs, clarified conditions with related figure
 Clarified 24-hour holdover stability spec condition
 Updated typical ADEV plot
 Updated output impedance typical spec
 Updated ΔF/ΔT and F_dynamic min and max specs</td>
</tr>
<tr>
<td>1.0</td>
<td>03/28/2020</td>
<td>Final datasheet
 Clarified Initial Tolerance specification condition
 Relabeled “First Pulse Accuracy” parameter to “Time to Rated Frequency Stability” for clarity</td>
</tr>
</tbody>
</table>
Version | Release Date | Change Summary
---|---|---
1.01 | 05/10/2020 | Added a hysteresis specification for 0°C to 70°C
Revised the Parallel Signal Format section description and figures
Changed F_dynamic for -40 to -20 C