# SiT1581

# 1.2 mm<sup>2</sup> µPower, Low-Jitter, 1 Hz – 2.5 MHz Oscillator



## **Features**

- 1 Hz to 2.5 MHz ±50 ppm all-inclusive frequency stability
- Factory programmable output frequency
- World's smallest Oscillator Footprint: 1.2 mm²
  - 1.5 mm x 0.8 mm CSP
- Ultra-low power: 4.5 µA (32.768 kHz)
- Supply voltage range: 1.62 V to 1.98 V
- Operating temperature ranges: -20°C to +70°C, -40°C to +85°C
- Pb-free, RoHS and REACH compliant
- Hermetically sealed against gas intrusion to exceed test conditions described in MIL-STD-883G Method 1014.12

# **Applications**

- Health and wellness monitors
- Smart pens
- ULP input devices
- Proprietary wireless
- Sensor interface













## **Electrical Characteristics**

#### **Table 1. Electrical Characteristics**

Conditions: Min/Max limits are over temperature,  $V_{DD} = 1.8 \text{ V} \pm 10\%$ , unless otherwise stated. Typical are at 25°C and  $V_{DD} = 1.8 \text{ V}$ .

|                                    |                 |      | ·                   |                     |                   | 2 111                                                                                                                                                                                                  |  |
|------------------------------------|-----------------|------|---------------------|---------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                          | Symbol          | Min. | Тур.                | Max.                | Unit              | Condition                                                                                                                                                                                              |  |
| Frequency and Stability            |                 |      |                     |                     |                   |                                                                                                                                                                                                        |  |
| Output Frequency                   | Fout            | 1    |                     | 2.5 M               | Hz                |                                                                                                                                                                                                        |  |
| Initial Frequency Tolerance        | F_tol           | -5   |                     | 5                   | ppm               | Includes 2x reflow, at 25°C                                                                                                                                                                            |  |
| Frequency Stability <sup>[1]</sup> | F_stab          | -50  |                     | 50                  | ppm               | All-inclusive including initial tolerance, temperature, V <sub>DD</sub> , aging, board-level underfill, and 20% load variation.                                                                        |  |
| Jitter Performance                 |                 |      |                     |                     |                   |                                                                                                                                                                                                        |  |
| Integrated Phase Jitter            | IPJ             |      | 2                   | 3.5                 | ns <sub>RMS</sub> | F <sub>OUT</sub> > 1 kHz. Integration bandwidth = 100 Hz to F <sub>OUT</sub> /2. Inclusive of 50 mV peak-to-peak sinusoidal noise on V <sub>DD</sub> . Noise frequency 100 Hz to 20 MHz                |  |
| RMS Period Jitter                  | PJ              |      | 2.5                 | 4                   | ns <sub>RMS</sub> | Cycles = 10,000, f = 32.768 kHz. Per JEDEC standard 65B                                                                                                                                                |  |
|                                    |                 |      | Supply Volta        | age and Curi        | ent Cons          | sumption                                                                                                                                                                                               |  |
| Operating Supply Voltage           | $V_{DD}$        | 1.62 |                     | 1.98                | V                 | Ordering Code "18"                                                                                                                                                                                     |  |
|                                    |                 | 2.97 | 3.3                 | 3.63                |                   | F <sub>OUT</sub> = 32.768 kHz, Ordering Code "33"                                                                                                                                                      |  |
|                                    |                 | 1.62 |                     | 3.63                |                   | F <sub>OUT</sub> = 32.768 kHz, Ordering Code "YY"                                                                                                                                                      |  |
| No Load Supply Current             | I <sub>DD</sub> |      | 3.65                | 5                   | μA                | F <sub>OUT</sub> = 1 Hz                                                                                                                                                                                |  |
|                                    |                 |      | 4.5                 | 5.5                 |                   | F <sub>OUT</sub> = 32.768 kHz @Vdd = 18 (Ordering Code)                                                                                                                                                |  |
|                                    |                 |      | 4.6                 | 5.8                 |                   | F <sub>OUT</sub> = 32.768 kHz @Vdd = 33 or @Vdd=YY (Ordering Code)                                                                                                                                     |  |
|                                    |                 |      | 6                   | 7                   |                   | F <sub>OUT</sub> = 100 kHz                                                                                                                                                                             |  |
|                                    |                 |      | 8.5                 | 10.5                |                   | F <sub>OUT</sub> = 500 kHz                                                                                                                                                                             |  |
|                                    |                 |      | 13                  | 16                  |                   | F <sub>OUT</sub> = 1 MHz                                                                                                                                                                               |  |
|                                    |                 |      | 30                  | 34.5                |                   | F <sub>OUT</sub> = 2.5 MHz                                                                                                                                                                             |  |
| Start-up Time at Power-up          | t_start         |      | 150                 | 300                 | ms                | Measured when supply reaches 90% of final $V_{\rm DD}$ to the first output pulse and within specified min/max frequency limit.                                                                         |  |
|                                    |                 |      | 300 +<br>2.0 cycles | 300 +<br>2.5 cycles |                   | 10 Hz < F <sub>OUT</sub> ≤ 200 Hz, to first output pulse.  Measured when supply reaches 90% of final V <sub>DD</sub> to the first output pulse and within specified min/max frequency limit.           |  |
|                                    |                 |      |                     | 500 +<br>3 cycles   |                   | 1 Hz $\leq$ F <sub>OUT</sub> $\leq$ 10 Hz, to first output pulse.<br>Measured when supply reaches 90% of final V <sub>DD</sub> to the first output pulse and within specified min/max frequency limit. |  |
| Operating Temperature Range        |                 |      |                     |                     |                   | <u>-</u>                                                                                                                                                                                               |  |
| Operating Temperature Range        | Op_Temp         | -20  |                     | 70                  | °C                | "C" ordering code                                                                                                                                                                                      |  |
| 1                                  |                 | -40  |                     | 85                  | °C                | "I" ordering code                                                                                                                                                                                      |  |



## **Table 1. Electrical Characteristics (continuous)**

| Parameter               | Symbol                          | Min. | Тур. | Max. | Unit     | Condition                                             |  |
|-------------------------|---------------------------------|------|------|------|----------|-------------------------------------------------------|--|
| LVCMOS Output           |                                 |      |      |      |          |                                                       |  |
| Output Rise/Fall Time   | t <sub>R</sub> , t <sub>F</sub> |      | 9    | 20   | ns       | 10-90%, 15 pF load @Vdd=18 or @Vdd=YY (Ordering Code) |  |
|                         |                                 |      | 4.5  | 10   |          | 10-90%, 15 pF load @Vdd=33 (Ordering Code)            |  |
| Output Clock Duty Cycle | DC                              | 45   |      | 55   | %        |                                                       |  |
| Output Voltage High     | VOH                             | 90%  |      |      | $V_{DD}$ | I <sub>OH</sub> = -1 μA, 15 pF load                   |  |
| Output Voltage Low      | VOL                             |      |      | 10%  | $V_{DD}$ | $I_{OL} = 1 \mu A$ , 15 pF load                       |  |

#### Note:

## **Table 2. Pin Configuration**

| Pin | Symbol   | I/O                    | Functionality                                                                                                                                                             |  |  |
|-----|----------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1   | NC       | Internal Test          | No Connect. Leave floating. Pin 1 is for internal testing and is designed to be left floating.                                                                            |  |  |
| 2   | CLK Out  | OUT                    | Oscillator clock output.                                                                                                                                                  |  |  |
| 3   | $V_{DD}$ | Power Supply           | Device supply voltage. Under normal operating conditions, $V_{DD}$ does not require external bypass/decoupling capacitor(s). SiT1581 includes on-chip $V_{DD}$ filtering. |  |  |
| 4   | GND      | Power Supply<br>Ground | Connect to ground.                                                                                                                                                        |  |  |

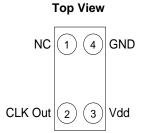



Figure 1. Pin Assignment

#### **Table 3. Absolute Maximum Ratings**

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part.

Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

| Parameters                                         | Test Conditions      | Value        | Unit |
|----------------------------------------------------|----------------------|--------------|------|
| Continuous Power Supply Voltage Range (VDD)        |                      | -0.5 to 4.0  | V    |
| Continuous Maximum Operating Temperature Range     |                      | 105          | °C   |
| Short Duration Maximum Operating Temperature Range | ≤ 30 minutes         | 125          | °C   |
| Human Body Model (HBM) ESD Protection              | JESD22-A114          | 2000         | V    |
| Charge-Device Model (CDM) ESD Protection           | JESD22-C101          | 750          | V    |
| Machine Model (MM) ESD Protection                  | JESD22-A115          | 300          | V    |
| Latch-up Tolerance                                 | JESD:                | 78 Compliant |      |
| Mechanical Shock Resistance                        | Mil 883, Method 2002 | 20,000       | g    |
| Mechanical Vibration Resistance                    | Mil 883, Method 2007 | 70           | g    |
| 1508 CSP Junction Temperature                      |                      | 150          | °C   |
| Storage Temperature                                |                      | -65 to 150   | °C   |

# **System Block Diagram**

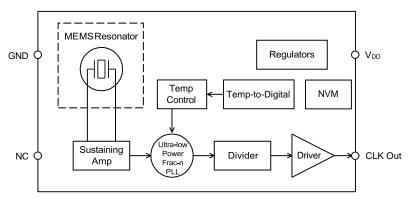



Figure 2. SiT1581 Block Diagram

<sup>1.</sup> Tested with Agilent 53132A frequency counter. Measured with ≥100 ms gate time for accurate frequency measurement.



## Description

SiT1581 is an ultra-small and ultra-low power factory programmable oscillator with an output frequency range between 1 Hz to 2.5 MHz. SiTime's silicon MEMS technology enables the first programmable, µPower oscillator in the world's smallest footprint and chip-scale packaging (CSP). Typical supply current is only 4.5 µA (32.768 kHz).

SiTime's MEMS oscillator consists of a MEMS resonator and a programmable IC. SiT1581 MEMS resonator is built with SiTime's unique MEMS First® process. A key manufacturing step is EpiSeal® during which the MEMS resonator is annealed with temperatures over 1000°C. EpiSeal creates an extremely strong, clean, vacuum chamber that encapsulates the MEMS resonator and ensures the best performance and reliability. During EpiSeal, a poly silicon cap is grown on top of the resonator cavity, which eliminates the need for additional cap wafers or other exotic packaging. As a result, SiTime's MEMS resonator die can be used like any other semiconductor die.

# **Frequency Stability**

The SiT1581 oscillator is factory trimmed to target frequency at room temperature. The result is a very accurate oscillator at room temperature and over temperature. Unlike quartz crystals that have a classic tuning fork parabola temperature curve with a 25°C turnover point with a 0.04 to 0.06 ppm/°C2 temperature coefficient (TCF), the SiT1581 temperature coefficient is calibrated at room temperature and corrected over temperature with an active temperature correction circuit. The result is <±50 ppm frequency variation over the -40°C to +85°C temperature range.

When measuring the SiT1581 output frequency with a frequency counter, it is important to make sure the counter's gate time is >100 ms. Shorter gate times may lead to inaccurate measurements.

The SiT1581 is designed to be robust and maintain frequency accuracy even in the presence of the smallest molecular gases that may be encountered either in manufacturing, qualification stress or general usage. In such cases, the SiT1581 is designed to withstand external influences and stay within the ±50 ppm all-inclusive frequency stability.



# **Typical Operating Curves**

 $(T_A = 25^{\circ}C, V_{DD} = 1.8 V)$ 

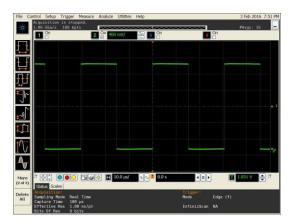



Figure 3. LVCMOS Output Swing  $(V_{DD} = 1.8 \text{ V})$ 

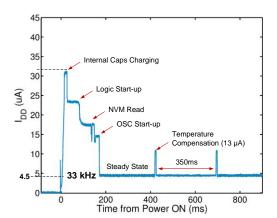
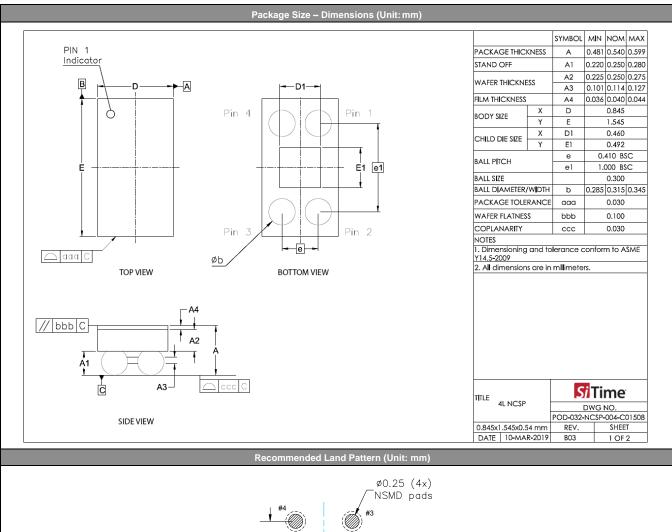





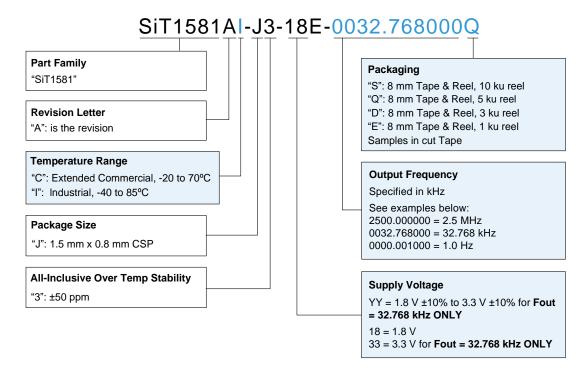
Figure 4. Start-up and Steady-State Current Profile



## **Dimensions and Patterns**






# **Manufacturing Guidelines**

- No Ultrasonic or Megasonic cleaning: Do not subject SiT1581 to an ultrasonic or megasonic cleaning environment. Permanent damage or long term reliability issues may occur. device.
- 2) Reflow profile, per JESD22-A113D.

- 3) The SiT1581 CSP includes a protective, opaque polymer top-coat. If the SiT1581 will see intense light, especially in the 1.0-1.2 μm IR spectrum, we recommend a protective "glob-top" epoxy or other cover to keep the light from negatively impacting the frequency stability.
- For additional manufacturing guidelines and marking/tape-reel instructions, refer to SiTime Manufacturing Notes.



# **Ordering Information**





#### **Table 4. Revision History**

| Version     | Release Date | Change Summary                                                                                                                                                                                                                                                           |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preliminary | 25-Jun-2020  | Preliminary datasheet. Subject to change                                                                                                                                                                                                                                 |
| 1.01        | 5-Aug-2020   | Final Release                                                                                                                                                                                                                                                            |
| 1.1         | 29-Mar-2021  | Added support for 3.3 V (Ordering code = 33) and 1.8 V to 3.3 V (Ordering Code = YY); Updated parameters Table 1 for new voltage settings Updated Ordering Information, added Option "D" for 3ku reels Updated hyperlinks, trademarks, date format and layout formatting |

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2020-2021. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (iii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

#### CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.