SiT9386

AEC-Q100, 1 to 220 MHz Ultra-low Jitter Differential Oscillator

Features

- AEC-Q100 Grade 2 temperature range (-40°C to 105°C).
 Grade 3 and 4 also available
- Any frequency between 1 MHz and 220 MHz, accurate to 6 decimal places. For frequency between 220 and 725 MHz, see SiT9387
- LVPECL, LVDS and HCSL output signaling types
- 0.23 ps RMS (typ) phase jitter (random, 12 kHz to 20 MHz)
- Frequency stability as low as ±10 ppm contact SiTime
- Industry-standard packages: 3.2 x 2.5, 7.0 x 5.0 mm.
 Contact SiTime for 5.0 x 3.2 mm package

Applications

- Automotive, and other high reliability electronics
- Infotainment systems, collision detection devices and in vehicle 10/40/100 Gbps Ethernet

Related products for automotive applications.

For aerospace and defense applications SiTime recommends using only EnduraTM SiT9346.

Electrical Characteristics

Table 1. Electrical Characteristics — Common to LVPECL. LVDS and HCSL

All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with standard output termination show in the termination diagrams. Typical values are at 25°C and nominal supply voltage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition			
			Free	quency Ran	ge				
Output Frequency Range	f	1	-	220	MHz	Accurate to 6 decimal places			
	Frequency Stability								
Frequency Stability		-10	-	+10	ppm	Inclusive of initial tolerance, operating temperature, rated			
		-20	-	+20	ppm	power supply voltage and load variations. Contact SiTime for ±10 ppm			
		-25	-	+25	ppm				
		-50	-	+50	ppm				
First Year Aging	F_1y	-	±1	-	ppm	At 25°C			
	1	r	Tem	perature Rai		T			
		-20	-	+70	°C	AEC-Q100 Grade 4			
Operating Temperature Range	T_use	-40	-	+85	°C	AEC-Q100 Grade 3			
		-40	-	+105	°C	AEC-Q100 Grade 2			
	•	T	Su	pply Voltag	е	T			
	Vdd	2.97	3.3	3.63	V				
Supply Voltage		2.70	3.0	3.30	V				
cappy remage		2.52	2.8	3.08	V				
		2.25	2.5	2.75	V				
	1	T	Input	Characteris	1				
Input Voltage High	VIH	70%	-	-	Vdd	Pin 1, OE			
Input Voltage Low	VIL	-	-	30%	Vdd	Pin 1, OE			
Input Pull-up Impedance	Z_in	-	100	-	kΩ	Pin 1, OE logic high or logic low			
	•	ı	Outpu	it Character	istics	T			
Duty Cycle	DC	45	-	55	%				
		T	Startu	p and OE Ti	ming				
Start-up Time	T_start	-	-	3.0	ms	Measured from the time Vdd reaches its rated minimum value			
OE Enable/Disable Time	T_oe	-	-	3.8	μs	f = 156.25 MHz. Measured from the time OE pin reaches rated VIH and VIL to the time clock pins reach 90% of swing and high-Z. See Figure 6 and Figure 7			

Table 2. Electrical Characteristics - LVPECL

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Curre	nt Consump	tion	
Current Consumption	ldd	-	-	89	mA	Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V
OE Disable Supply Current	I_OE	-	-	58	mA	OE = Low
Output Disable Leakage Current	I_leak	_	0.15	-	μА	OE = Low
Maximum Output Current	I_driver	_	_	33	mA	Maximum average current drawn from OUT+ or OUT-
			Output	Characteris	stics	
Output High Voltage	VOH	Vdd-1.15	-	Vdd-0.7	V	See Figure 2
Output Low Voltage	VOL	Vdd-2.0	-	Vdd-1.5	V	See Figure 2
Output Differential Voltage Swing	V_Swing	1.2	1.6	2.0	V	See Figure 3
Rise/Fall Time	Tr, Tf	_	225	310	ps	20% to 80%, see Figure 3
			Jitter –	7.0 x 5.0 pag	kage	
RMS Period Jitter ^[1]	T_jitt		1.0	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
RMS Phase Jitter (random)	T_phj	-	0.225	0.270	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to 70°C and -40 to 85°C
		-	0.225	0.300	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C
		_	0.1		ps	f = 156.25 or 322.265625 MHz, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, includes spurs, all Vdd levels
			Jitter -	3.2 x 2.5 pa	ckage	
RMS Period Jitter ^[1]	T_jitt	_	1.0	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
RMS Phase Jitter (random)	T_phj	_	0.225	0.275	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -20 to 70°C and -40 to 85°C
		_	0.225	0.340	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C
		_	0.1	-	ps	f = 156.25 or 322.265625 MHz, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, includes spurs, all Vdd levels

Notes:

1. Measured according to JESD65B.

Table 3. Electrical Characteristics - LVDS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition		
			Curre	nt Consump	tion			
Current Consumption	ldd	ı	1	79	mA	Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V		
OE Disable Supply Current	I_OE	ı	1	58	mA	OE = Low		
Output Disable Leakage Current	l_leak	1	0.15	-	μА	OE = Low		
	Output Characteristics							
Differential Output Voltage	VOD	250	1	450	mV	See Figure 4		
VOD Magnitude Change	ΔVOD	-	ı	50	mV	See Figure 4		
Offset Voltage	VOS	1.125	ı	1.375	V	See Figure 4		
VOS Magnitude Change	ΔVOS	-	ı	50	mV	See Figure 4		
Rise/Fall Time	Tr, Tf	ı	400	515	ps	Measured with 2 pF capacitive loading to GND, 20% to 80%, see Figure 5		
			Jitter –	7.0 x 5.0 pa	ckage			
RMS Period Jitter[2]	T_jitt	ı	1.0	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V		
RMS Phase Jitter (random)	T_phj	1	0.215	0.265	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to 70°C and -40 to 85°C.		
		-	0.215	0.300	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C		
		-	0.1	-	ps	f = 156.25 or 322.265625 MHz, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, includes spurs, all Vdd levels.		
			Jitter –	3.2 x 2.5 pa	ckage			
RMS Period Jitter[2]	T_jitt	-	1.0	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V		
RMS Phase Jitter (random)	T_phj	ı	0.235	0.275	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to 70°C and -40 to 85°C		
		ı	0.235	0.320	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C		
		-	0.1	-	ps	f = 156.25 or 322.265625 MHz, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, includes spurs, all Vdd levels		

Notes:

2. Measured according to JESD65B.

Table 4. Electrical Characteristics - HCSL

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Curre	nt Consump	tion	
Current Consumption	ldd	-	ı	92	mA	Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V
OE Disable Supply Current	I_OE	-	ı	58	mA	OE = Low
Output Disable Leakage Current	l_leak	-	0.15	-	μА	OE = Low
Maximum Output Current	I_driver	-	ı	35	mA	Maximum average current drawn from OUT+ or OUT-
			Output	t Characteri	stics	
Output High Voltage	VOH	0.60	-	0.90	V	See Figure 2
Output Low Voltage	VOL	-0.05	-	0.08	V	See Figure 2
Output Differential Voltage Swing	V_Swing	1.2	1.4	1.80	V	See Figure 3
Rise/Fall Time	Tr, Tf	-	360	495	ps	Measured with 2 pF capacitive loading to GND, 20% to 80%, see Figure 3
			Jitter –	7.0 x 5.0 pa	ckage	
RMS Period Jitter[3]	T_jitt	-	1.0	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
RMS Phase Jitter (random)	T_phj	_	0.220	0.270	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -20 to 70°C and -40 to 85°C.
		_	0.220	0.300	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C
		_	0.1	-	ps	f = 156.25 or 322.265625 MHz, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, includes spurs, all Vdd levels.
			Jitter –	3.2 x 2.5 pa	ckage	
RMS Period Jitter[3]	T_jitt	-	1.0	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
RMS Phase Jitter (random)	T_phj	-	0.230	0.275	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to 70°C and -40 to 85°C.
		-	0.230	0.340	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C
		-	0.1	_	ps	f = 156.25 or 322.265625 MHz, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, includes spurs, all Vdd levels.

Notes:

3. Measured according to JESD65B.

Table 5. Pin Description

Pin	Мар	Functionality				
1	Output Enable (OE)		H ^[5] : specified frequency output L: output is high impedance			
'	Non Connect (NC)		H or L or Open: No effect on output frequency or other device functions			
2	NC	NA	No Connect; Leave it floating or connect to GND for better heat dissipation			
3	GND	Power	Vdd Power Supply Ground			
4	OUT+	Output	Oscillator output			
5	OUT-	Output Complementary oscillator output				
6 4	Vdd	Power	Power supply voltage ^[6]			

Top View OE/NC 1 6 VDD NC 2 5 OUTGND 3 4 OUT+

Figure 1. Pin Assignments

Notes:

- 5. In OE mode, a pull-up resistor of 10 $k\Omega$ or less is recommended if pin 1 is not externally driven.
- A capacitor of value 0.1 μF or higher between Vdd and GND is required. An additional 10 μF capacitor between Vdd and GND is required for the best phase jitter performance.

Table 6. Absolute Maximum Ratings

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part.

Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Vdd	-0.5	4.0	V
VIH		Vdd + 0.3V	V
VIL	-0.3		V
Storage Temperature	-65	150	°C
Maximum Junction Temperature		130	°C
Soldering Temperature (follow standard Pb-free soldering guidelines)		260	°C

Table 7. Thermal Considerations[7]

Package	θ _{JA} , 4 Layer Board (°C/W)	θ _{JC} , Bottom (°C/W)
3225, 6-pin	80	30
7050, 6-pin	52	19

Notes:

7. Refer to JESD51 for θ_{JA} and θ_{JC} definitions, and reference layout used to determine the θ_{JA} and θ_{JC} values in the above table.

Table 8. Maximum Operating Junction Temperature^[8]

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature
70°C	95°C
85°C	110°C
105°C	130°C

Notes:

8. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 9. Environmental Compliance

Parameter	Test Conditions	Value	Unit
Mechanical Shock Resistance	MIL-STD-883F, Method 2002	10,000	g
Mechanical Vibration Resistance	MIL-STD-883F, Method 2007	70	g
Soldering Temperature (follow standard Pb free soldering guidelines)	MIL-STD-883F, Method 2003	260	°C
Moisture Sensitivity Level	MSL1 @ 260°C		
Electrostatic Discharge (HBM)	HBM, JESD22-A114	2,000	V
Charge-Device Model ESD Protection	JESD220C101	750	V
Latch-up Tolerance	JESD	78 Compliant	

Waveform Diagrams (continued)

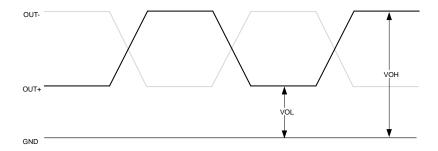


Figure 2. LVPECL/HCSL Voltage Levels per Differential Pin (OUT+/OUT-)

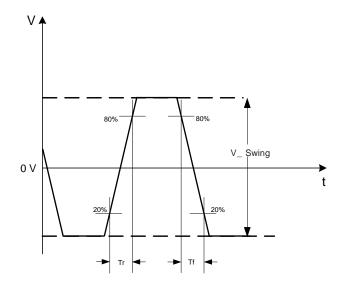


Figure 3. LVPECL/HCSL Voltage Levels across Differential Pair

Waveform Diagrams (continued)

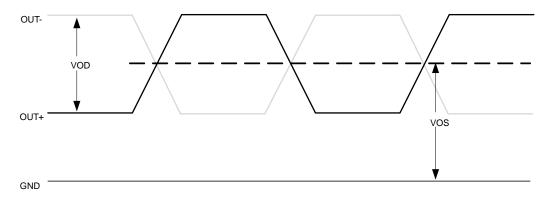


Figure 4. LVDS Voltage Levels per Differential Pin (OUT+/OUT-)

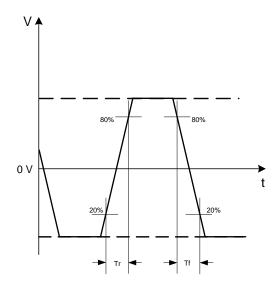


Figure 5. LVDS Differential Waveform

Timing Diagrams

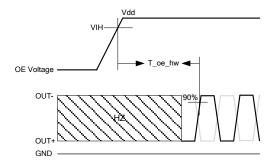


Figure 6. Hardware OE Enable Timing

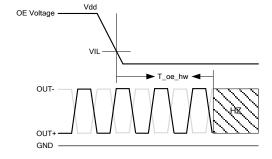


Figure 7. Hardware OE Disable Timing

Termination Diagrams

LVPECL

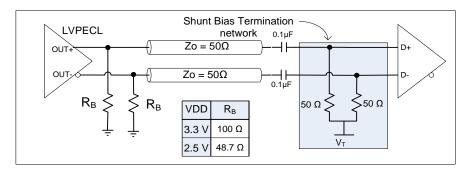


Figure 8. LVPECL with AC-coupled termination

Figure 9. LVPECL DC-coupled load termination with Thevenin equivalent network

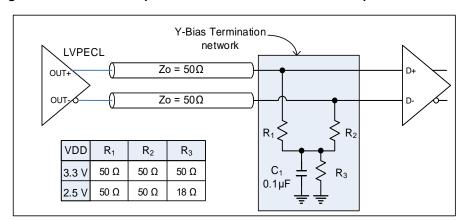


Figure 10. LVPECL with Y-Bias termination

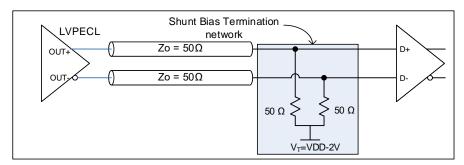


Figure 11. LVPECL with DC-coupled parallel shunt load termination

Termination Diagrams (continued)

LVDS

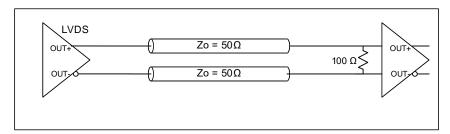


Figure 12. LVDS single DC termination at the load

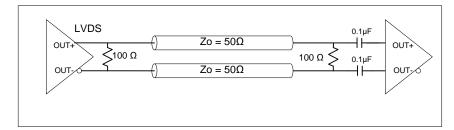


Figure 13. LVDS double AC termination with capacitor close to the load

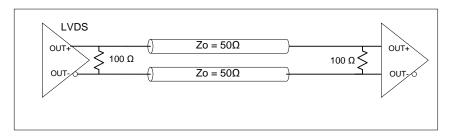


Figure 14. LVDS double DC termination

HCSL

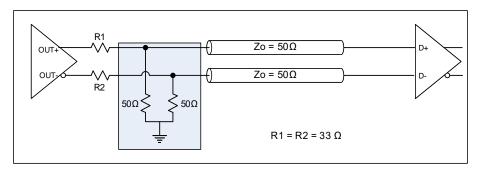
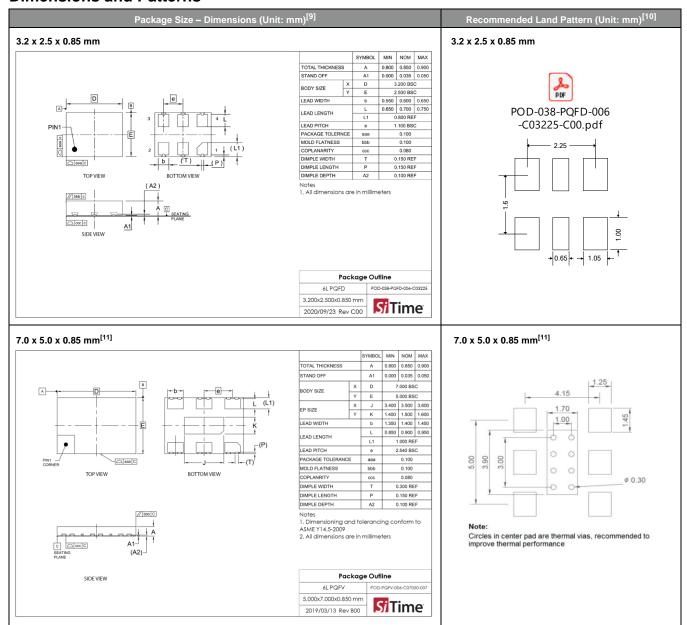
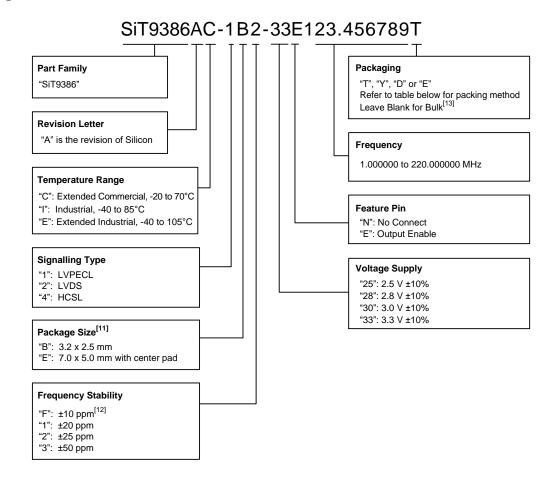



Figure 15. HCSL interface termination

Dimensions and Patterns



Notes:

- 9. Top Marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
- 10. A capacitor of value 0.1 μF or higher between Vdd and GND is required. An additional 10 μF capacitor between Vdd and GND is required for the best phase jitter performance
- 11. The center pad has no electrical function. Soldering down the center pad to the GND is recommended for best thermal dissipation, but is optional.

Ordering Information

Notes:

- 12. Contact SiTime for 5.0 x 3.2 mm package.
- 13. Contact SiTime for ±10 ppm option.
- 14. Bulk is available for sampling only.

Table 10. Ordering Codes for Supported Tape & Reel Packing Method

Device Size (mm x mm)	8 mm T&R (3ku)	8 mm T&R (1ku)	12 mm T&R (3ku)	12 mm T&R (1ku)	16 mm T&R (3ku)	16 mm T&R (1ku)
7.0 x 5.0	_	_	_	_	Т	Υ
3.2 x 2.5	D	E			_	_

Table 11. Additional Information

Document	Description	Download Link
ECCN #: EAR99	Five character designation used on the commerce Control List (CCL) to identify dual use items for export control purposes.	
Part number Generator	Tool used to create the part number based on desired features.	https://www.sitime.com/part-number-generator
Manufacturing Notes	Tape & Reel dimension, reflow profile and other manufacturing related info	https://www.sitime.com/sites/default/files/gated/Manufacturing-Notes-for-SiTime-Products.pdf
Qualification Reports	RoHS report, reliability reports, composition reports	http://www.sitime.com/support/quality-and-reliability
Performance Reports	Additional performance data such as phase noise, current consumption and jitter for selected frequencies	http://www.sitime.com/support/performance-measurement-report
Termination Techniques	Termination design recommendations	http://www.sitime.com/support/application-notes
Layout Techniques	Layout recommendations	http://www.sitime.com/support/application-notes

Table 12. Revision History

Revision	Release Date	Change Summary
0.1	8-Mar-2021	Initial draft
0.87	6-Nov-2017	Updated package drawings Corrected tape/reel ordering information Updated Electrical Characteristics based on characterization Included max numbers for IPJ Added additional information table Corrected formatting issues Increased temperature range from 95°C to 105°C Removed ±10 ppm options for automotive and industrial temperature ranges Changed ±20 ppm to "contact SiTime" Updated termination diagrams Lower mechanical shock from 20,000 to 10,000 g
0.90	24-Nov-2017	Ordering information updates and page layout changes
1.0	15-Mar-2019	Updated Electrical Characteristics tables Updated waveform diagrams Added OE enable/disable timing diagrams Updated package dimensions Added an AEC-Q100 Grade 4 temperature option Updated the ordering information
1.01	9-Mar-2021	Updated L1 and Dimple Width package dimensions for 3.2 x 2.5 mm package Updated hyperlinks and changed rev table date format
1.02	1-Jan-2023	Updated company disclaimer, links, references and icons

SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2015-2023. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. This product is not suitable or intended to be used in a life support application or component, to operate nuclear facilities, in military or aerospace applications, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS: USED IN LIFE SUPPORT DEVICES, TO OPERATE NUCLEAR FACILITIES, FOR MILITARY OR AEROSPACE USE, OR IN OTHER MISSION CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

For aerospace and defense applications, SiTime recommends using only Endura™ ruggedized products.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.