How to Measure Clock Jitter – Part 2
Phase Noise and Phase Jitter

April 22-23, 2013
Agenda

• What are phase noise, phase jitter, and TIE jitter?

• Who cares about phase jitter?

• How to measure phase jitter?
What is Clock Jitter

• Jitter is, “The deviation of an event timing relative to its ideal value”
 • Event? - defined by specific type of jitter
 • Ideal value? - event timing on an ideal clock, often estimated from average value of the event

• Jitter definitions:
 • Period Jitter (Covered in Part 1)
 • Deviation of the clock period from averaged value
 • Timing Interval Error (TIE) Jitter and Phase jitter (Part 2)
 • Error in edge location relative to an ideal clock
 • Long Term or Multi-Cycle Jitter (Part 3)
 • Deviation of the durations of multiple cycles from the averaged value
 • Also known as long term jitter or accumulated jitter
 • Cycle-to-Cycle Jitter (Part 3)
 • Deviation of the difference of periods of two consecutive clock cycles
What is Phase Noise?

- Noise free oscillator: Signal energy concentrates in narrow frequency range (BLUE)
- Real oscillator: Noise spreads the oscillation energy in larger frequency range (RED)
- **Phase noise**: The ratio of “noise power spectral density” to the “oscillator carrier power”

Simulated oscillator spectrum with and without noise

\[V(t) = \cos(\omega t + \phi_j(t)) \]

Oscillation with phase noise

\[V(t) = \cos(\omega t) \]

Ideal oscillation without noise
Who Cares About Phase Noise or Phase Jitter

• Digital electronics with high-speed serial I/O
 • System extracts clock signal from serial data transmission
 • Common serial I/O standards:
 • SAS, SATA, USB for storage device and computer peripherals
 • HDMI, SDI for graphics and video equipment
 • Ethernet, Fiber-Channel for data communication
 • SONET/SDH, DSL, Cable Modem for telecommunication

• RF transceivers and frequency synthesizers
 • Radio and TV broadcast
 • Wireless base stations and handsets
 • Wifi, satellite, ……
 • Telemetry equipment, GPS
 • Instrumentation
Example: Phase Noise

- Phase Noise
 - Measure in 1Hz bandwidth
 - Expressed in dBc/Hz
 - X-axis plotted in frequency relative to carrier → Frequency offset
Phase Jitter Defined

- “Phase Jitter” or “Integrated Phase Jitter”
 - Phase noise integrated over a specified offset frequency range
 - Represents edge location variation relative to an ideal noise-free clock
 - Critical specification for serial interfaces
 - e.g. 1-10GbE, PCIe, SATA/SAS, Fibre Channel, …..

![Phase Jitter Diagram]

Offset frequency range for phase noise integration

Phase Noise (dBc/Hz)

Single-Sideband Frequency Offset from Carrier (Hz)
Phase Noise and Phase Jitter

- Any type of jitter is related to the phase noise as below:

\[\sigma_J = \frac{1}{\sqrt{2\pi f_c}} \sqrt{\int_{f_1}^{f_2} 10^{S_J(f)/10} \cdot |H(f)|^2 \cdot df} \]

- \(\sigma_J \): RMS jitter
- \(f_c \): Oscillator frequency
- \(S_J(f) \): Single-sideband phase noise (in dBC/Hz)
- \(H(f) \): Frequency response for the type of jitter or applications
- \(f_1 \): Lower frequency offset limit of integration range
- \(f_2 \): Upper frequency offset limit of integration range
Reference Clock Jitter Filter in Serial I/O Applications

Serial I/O Applications: Ethernet, Fiber Channel, SONET/SDH, SATA, HDMI, etc.

For 8b/10b encoded data streams, e.g. Ethernet.

\[f_i = \frac{f_{\text{baud}}}{1667} \]
\[f_u = \frac{f_{\text{ref}}}{10} \]

Response specified by relevant standards

Clock jitter filter response
Example: Integrated Phase Jitter

- IPJ for SiT8208-50MHz in 12 kHz to 20 MHz range
Example: Integrated Phase Jitter (IPJ) for SATA-1.5Gbps Applications

- IPJ of SiT8208-50MHz from 12 kHz to 20 MHz with SATA jitter filter

Phase jitter for SATA-1.5Gbps:
- 3dB cutoff frequencies 900 kHz and 7.5 MHz
- -20 dB/dec roll-off
Phase Noise Measurement Setup with Phase Noise Analyzer (PNA)

Setup:
Direct connection to PNA
50Ω loading to the oscillator output

- Measure phase noise and phase jitter with PNA
 - Use phase noise analyzer system with low noise floor
 - Use clean power supply and power supply bypass for DUT
 - Recommend direct 50Ω connection to PNA
Jitter Definitions and Terminology

Time Interval Error (TIE)

- TIE sequence is clock jitter represented in time domain:
 - Event: rising or falling edge
 - Ideal value = ideal location in time
 - Multiples of ideal period
 - Averaged period often used in actual measurement
 \[T_c \approx T_{avg} = 1 / f_{avg} \]

\[TimeJ(k) = TIE_k = t_k - k \times T_c \]

Ideal clock

Jitter free, no frequency drift

Clock signal

Time at 50% crossing of the rising edge
Jitter Definitions and Terminology
Phase Noise and TIE

- TIE sequence carries the same information as phase noise in most cases
 - TIE: Discrete-time domain signal
 - Phase noise: Continuous-time noise power density in frequency domain

\[\text{FFT}\{\text{TIE}\} \approx \text{Phase_Noise} \]

- Differences
 - TIE is subject to aliasing
 - TIE represents the true noise in the signal phase
 - TIE is measured with time domain equipment, e.g. real-time oscilloscope
 - Phase noise is measured with spectrum analysis equipment, e.g. phase noise analyzer

- Both **TIE** and **Phase Noise** should be filtered and integrated to obtain “**Phase Jitter**” relevant to specific applications
TIE Jitter Measurement Setup with Real-Time Oscilloscope

Setup:
Direct connection to oscilloscope
50Ω loading to the oscillator output

- Measure TIE Jitter with Real Time Oscilloscope
- Use oscilloscope with low time base error (< 0.5 ps rms)
- Optimize oscilloscope settings to reduce measurement error
- Direct 50Ω connection to oscilloscope can be used
- Real time oscilloscope has higher noise floor due to wider channel bandwidth and aliasing effect
Example: TIE Jitter with Real Time Scope

TIE jitter in ps RMS;
Higher than phase jitter measurement with phase noise analyzer:
- Scope noise floor
- Aliasing

732 fs
Measure TIE Jitter with Real Time Scope

- Optimize acquisition bandwidth and vertical scale to minimize noise
- Set up “TIE Filter” and “Clock Recovery” for TIE jitter measurement
 - TIE Filter: set the offset frequency range for phase noise integration
 - Clock Recovery: set the RX PLL filter corresponding to specific serial interface
Summary

• Phase noise is frequency domain representation of the noise affecting signal phase

• Phase jitter can be measured using phase noise analyzers or scopes

• Understand application requirement for phase jitter measurement
 • Integration bandwidth
 • Jitter filter
Contact Information

• For Questions, contact SiTime Technical Support
 Technicalsupport@sitime.com

• For *Turbo Webinar* pdf Downloads on SiTime’s Web Site
 www.sitime.com/support/sitime-u/turbo-webinars

 • All new webinars will be posted within 24-hours

• For app notes and other info, visit
 http://www.sitime.com/images/stories/applications/AN10001_10GbE_RJbudget_r2.3.pdf